uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Whole Slide Image Registration for the Study of Tumor Heterogeneity
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.ORCID-id: 0000-0001-8658-6417
Ipatimup, Institute of Molecular Pathology and ImmunologyUniversity of Porto. (i3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal)
(i3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal)
(i3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal)
Vise andre og tillknytning
2018 (engelsk)Inngår i: MICCAI 2018 - International Workshop on Ophthalmic Medical Image Analysis: OMIA 2018, COMPAY 2018: Computational Pathology and Ophthalmic Medical Image Analysis, Cham: Springer, 2018, s. 95-102Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Consecutive thin sections of tissue samples make it possible to study local variation in e.g. protein expression and tumor heterogeneity by staining for a new protein in each section. In order to compare and correlate patterns of different proteins, the images have to be registered with high accuracy. The problem we want to solve is registration of gigapixel whole slide images (WSI). This presents 3 challenges: (i) Images are very large; (ii) Thin sections result in artifacts that make global affine registration prone to very large local errors; (iii) Local affine registration is required to preserve correct tissue morphology (local size, shape and texture). In our approach we compare WSI registration based on automatic and manual feature selection on either the full image or natural sub-regions (as opposed to square tiles). Working with natural sub-regions, in an interactive tool makes it possible to exclude regions containing scientifically irrelevant information. We also present a new way to visualize local registration quality by a Registration Confidence Map (RCM). With this method, intra-tumor heterogeneity and characteristics of the tumor microenvironment can be observed and quantified.

sted, utgiver, år, opplag, sider
Cham: Springer, 2018. s. 95-102
Serie
Lecture Notes in Computer Science (LNCS) ; 11039
Emneord [en]
WSI, digital pathology, registration, whole slide image
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-368006DOI: 10.1007/978-3-030-00949-6_12ISBN: 978-3-030-00949-6 (digital)ISBN: 978-3-030-00948-9 (tryckt)OAI: oai:DiVA.org:uu-368006DiVA, id: diva2:1267389
Konferanse
21st INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING & COMPUTER ASSISTED INTERVENTION, Miccai2018, September 16-20 2018 GRANADA / SPAIN
Prosjekter
TissUUmaps
Forskningsfinansiär
EU, European Research Council, 682810Tilgjengelig fra: 2018-12-02 Laget: 2018-12-02 Sist oppdatert: 2019-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://www.miccai2018.org/en/

Personposter BETA

Solorzano, LeslieWählby, Carolina

Søk i DiVA

Av forfatter/redaktør
Solorzano, LeslieOliveira, CarlaWählby, Carolina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 58 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf