uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Origin of the high-temperature Olserum-Djupedal REE-phosphate mineralisation, SE Sweden: A unique contact metamorphic-hydrothermal system
Univ Helsinki, Dept Geosci & Geog, POB 64,Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland.ORCID iD: 0000-0003-3930-440X
Rhein Westfal TH Aachen, Inst Appl Mineral & Econ Geol, Wullnerstr 2, D-52062 Aachen, Germany.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Mineralogy Petrology and Tectonics. Geol Survey Sweden, Dept Mineral Resources, Box 670, SE-75128 Uppsala, Sweden.
Univ Helsinki, Dept Geosci & Geog, POB 64,Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland;Rhein Westfal TH Aachen, Inst Appl Mineral & Econ Geol, Wullnerstr 2, D-52062 Aachen, Germany.
Show others and affiliations
2018 (English)In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, Vol. 101, p. 740-764Article in journal (Refereed) Published
Abstract [en]

The Swedish part of the Fennoscandian Shield hosts a variety of rare earth element (REE) deposits, including magmatic to magmatic-hydrothermal types. This paper focuses on the origin of the Olserum-Djupedal REEphosphate mineralisation located in the sparsely studied Vastervik region, SE Sweden. Here, mineralisation occurs in three main areas, Olserum, Djupedal and Bersummen. Primary hydrothermal REE mineralisation formed at high temperatures (about 600 degrees C), leading to precipitation of monazite-(Ce), xenotime-(Y), fluor apatite and minor (Y,REE,U,Fe)-(Nb,Ta)-oxides in veins and vein zones dominated by biotite, amphibole, magnetite and quartz. The veins are hosted primarily by metasedimentary rocks present close to, or within, the contact aureole of a local 1.8 Ga ferroan alkali feldspar granite pluton, but also occur within in the chemically most primitive granite in the outermost part of that pluton. In the Djupedal area, REE-mineralised metasedimentary bodies are extensively migmatised, with migmatisation post-dating the main stage of mineralisation. In the Olserum and Bersummen areas, the REE-bearing veins are cross-cut by abundant pegmatitic to granitic dykes. The field-relationships demonstrate a-protracted magmatic evolution of the granitic,pluton and a clear spatial and temporal relationship of the REE mineralisation to the granite. The major and trace element chemistry of ore-associated biotite and magnetite support genetic links between all mineralised areas. Biotite mineral chemistry data further demonstrate a distinct chemical trend from meta sediment-hosted ore-associated biotite distal to the major contact of the granite to the biotite in the granite hosted veins. This trend is characterised by a systematic decrease in Mg and Na and a coupled increase in Fe and Ti with proximity to the granite-hosted veins. The halogen compositions of ore-associated biotite indicate elevated contents of HCl and HF in the primary REE mineralising fluid. Calculated log(f(HF)/f(HCL)) values in the Olserum area suggest a constant ratio of about -1 at temperatures of 650-550 degrees C during the evolution of the primary hydrothermal system. In the Djupedal and Bersummen areas, the fluid locally equilibrated at lower log (f(HF)/f(HCl)) values down to -2. High Na contents in ore-associated biotite and amphibole, and the abundance of primary ore-associated biotite indicate a K- and Na-rich character of the primary REE mineralising fluid and suggest initial high-temperature K-Na metasomatism. With subsequent cooling of the system, the fluid evolved locally to more Ca-rich compositions as indicated by the presence of the Ca-rich minerals allanite-(Ce) and uvitic tourmaline and by the significant calcic alteration of monazite-(Ce). The later Ca-rich stages were probably coeval with low to medium-high temperature (200-500 degrees C) Na-Ca metasomatism variably affecting the granite and the wall rocks, producing distinct white quartz-plagioclase rocks. All observations and data lead us to discard the prevailing model that the REE mineralisation in the Olserum-Djupedal district represents assimilated and remobilised former heavy mineral-rich beds. Instead, we propose that the primary REE mineralisation formed by granite-derived fluids enriched in REE and P that were expelled early during the evolution of a local granitic pluton. The REE mineralisation developed primarily in the contact aureole of this granite and represents the product of a high temperature contact metamorphic-hydrothermal mineralising system. The REE mineralisation probably formed synchronously with K-Na and subsequent Na-Ca metasomatism affecting the granite and the wall rocks. The later Na-Ca metasomatic stage is probably related to a regional Na +/- Ca metasomatic and associated U +/- REE mineralising system operating concurrently with granitic magmatism at c. 1.8 Ga in the Vastervik region. This highlights the potential for discovering hitherto unknown REE deposits and for the reappraisal of already known deposits in this part of the Fennoscandian Shield.

Place, publisher, year, edition, pages
2018. Vol. 101, p. 740-764
Keywords [en]
Olserum, Djupedal, REE, Phosphate, Metasomatism, Halogen fugacity
National Category
Geology
Identifiers
URN: urn:nbn:se:uu:diva-369766DOI: 10.1016/j.oregeorev.2018.08.018ISI: 000448092400040OAI: oai:DiVA.org:uu-369766DiVA, id: diva2:1271364
Funder
Swedish Research CouncilAvailable from: 2018-12-17 Created: 2018-12-17 Last updated: 2018-12-17Bibliographically approved

Open Access in DiVA

fulltext(11809 kB)72 downloads
File information
File name FULLTEXT01.pdfFile size 11809 kBChecksum SHA-512
b9c5a083f5a222c56e2bdf22d01bdaa1d35f84a13571eb31df736fedd55ef8a15fc6896dbd02b31ef43e3e4691a29c20514d19e2f4059fe4ae3cd7d0c8a12aa4
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Jonsson, Erik

Search in DiVA

By author/editor
Andersson, Stefan S.Jonsson, Erik
By organisation
Mineralogy Petrology and Tectonics
In the same journal
Ore Geology Reviews
Geology

Search outside of DiVA

GoogleGoogle Scholar
Total: 72 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 157 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf