uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Concomitant targeting of PD-1 or CD137 enhances the effect of adjuvant pro-inflammatory allogeneic dendritic cells.
Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-9725-0422
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Science for Life Laboratory, SciLifeLab.
(English)Manuscript (preprint) (Other academic)
National Category
Immunology in the medical area
Identifiers
URN: urn:nbn:se:uu:diva-377270OAI: oai:DiVA.org:uu-377270DiVA, id: diva2:1289307
Available from: 2019-02-16 Created: 2019-02-16 Last updated: 2019-02-21
In thesis
1. Allogeneic dendritic cells as adjuvants in cancer immunotherapy
Open this publication in new window or tab >>Allogeneic dendritic cells as adjuvants in cancer immunotherapy
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent years, immunotherapeutic approaches have achieved remarkable successes through checkpoint blockade antibodies, advances in the use of chimeric antigen receptor (CAR) T cells and new insights into the immunosuppressive role of the tumor microenvironment (TME). Through the advances, the role of cancer vaccines based on ex vivo manipulated autologous dendritic cells (DC) has been challenged. The main aim of DC-based vaccination is the induction of tumor-specific T-cell responses through presentation of tumor-associated antigens. However, this process has been found to be highly dependent on the ability of the injected vaccine-DCs to activate endogenous bystander DCs.

In this work, we examined the feasibility of having an allogeneic source of vaccine-DCs (alloDCs), not for direct antigen-presentation to T cells but as an immune primer aiming to activate bystander DCs. In paper I, we treated alloDCs with a T helper cell type 1 (Th1)-promoting maturation cocktail alone or combined with a replication-deficient, infection-enhanced adenoviral vector (Ad5M) as a potential gene delivery vehicle. We found that mature pro-inflammatory alloDCs, either non-transduced or transduced, created a cytokine- and chemokine-enriched milieu in vitro, and promoted the activation of co-cultured immune cells, including cytolytic NK cells, from unrelated donors. The emerged milieu induced the maturation of bystander DCs, which cross-presented antigens from their environment to autologous antigen-specific T cells. In paper II, we found that alloDCs promoted the migration of murine immune cells both to the site of injection and to the draining lymph node. When Ad5M was used for the delivery of the melanoma-associated antigen gp100, we found that gp100-expressing alloDCs were able to control tumor growth through gp100-specific T-cell responses and alteration of the TME. In paper III, we found that co-administration of alloDCs with an adenoviral vector encoding for HPV-antigens is effective in controlling the growth of HPV-related tumors and this may depend on a cross-talk between alloDCs and NK cells which leads to further recruitment of immune cells into the TME. In paper IV, we observed that concomitant targeting of immune checkpoint receptors or co-stimulatory molecules results in synergistic therapeutic effects in a murine colorectal model.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 50
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1542
Keywords
Allogeneic dendritic cells, immune primer, adjuvant, adenoviral vector, cancer immunotherapy, tumor microenvironment
National Category
Immunology in the medical area
Research subject
Clinical Immunology
Identifiers
urn:nbn:se:uu:diva-377269 (URN)978-91-513-0579-0 (ISBN)
Public defence
2019-04-12, Rudbecksalen, Rudbecklaboratoriet, Dag Hammarskjölds väg 20, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2019-03-22 Created: 2019-02-21 Last updated: 2019-05-07

Open Access in DiVA

No full text in DiVA

Authority records BETA

Fotaki, GrammatikiYu, DiEssand, MagnusKarlsson-Parra, Alex

Search in DiVA

By author/editor
Fotaki, GrammatikiYu, DiEssand, MagnusKarlsson-Parra, Alex
By organisation
Science for Life Laboratory, SciLifeLabClinical Immunology
Immunology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf