uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Two-Dimensional CH3NH3PbI3 with High Efficiency and Superior Carrier Mobility: A Theoretical Study
SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
St Xaviers Coll, Dept Phys, Computat Mat & Nanosci Grp, Ahmadabad 38009, Gujarat, India.
2019 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 9, s. 5231-5239Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Two-dimensional (2D) halide perovskites have distinct tunable compositional and structural properties, which make 2D materials a good candidate to improve the characteristics of photovoltaic applications. We have explored strain-dependent structural, electronic, and optical properties of organic inorganic hybrid perovskite CH3NH3PbI3 monolayers using density functional calculations. Here, we have calculated carrier mobility of electrons and holes and the band gap of the CH3NH3PbI3 monolayer. The results suggest that with increasing tensile and compressive strains, the band gap increases up to 5% (in the case of tensile strain), whereas decreases toward instability, i.e., 9% (in the case of compressive strain). The carrier mobility of 2D CH3NH3PbI3 is approximately 16 times larger than that of the bulk form of CH3NH3PbI3. Furthermore, we have also investigated optical properties, which show good activity in the visible as well as in the high-ultraviolet region of the spectrum. In addition, the 2D CH3NH3PbI3 monolayer shows good transmittance (>80%) in a lower energy range as well as high absorption coefficient of 14.09 X 10(5) cm(-1) at 8.8 eV, which is up to 40% higher than that of the bulk form of CH3NH3PbI3; however, under both types of strains, the absorption coefficient is decreased in the 2D CH3NH3PbI3 monolayer. For photovoltaic applications, we have calculated the open-circuit voltage (V-oc), fill factor (FF), short-circuit current density (J(sc)), and power conversion efficiency (eta) of the 2D CH3NH3PbI3 monolayer. Our theoretical results suggest that the power conversion efficiency (eta) is 28%, which is higher than that of its bulk form and 5% less than the Shockley-Queisser limit (33%), suggesting that 2D CH3NH3PbI3 is a good candidate for the solar cell application.

sted, utgiver, år, opplag, sider
2019. Vol. 123, nr 9, s. 5231-5239
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-380461DOI: 10.1021/acs.jpcc.8b11427ISI: 000460996000009OAI: oai:DiVA.org:uu-380461DiVA, id: diva2:1299723
Tilgjengelig fra: 2019-03-28 Laget: 2019-03-28 Sist oppdatert: 2019-03-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Singh, Deobrat

Søk i DiVA

Av forfatter/redaktør
Singh, Deobrat
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 58 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf