uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Minimizing Replay under Way-Prediction
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.ORCID iD: 0000-0002-6259-7821
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
2019 (English)Report (Other academic)
Abstract [en]

Way-predictors are effective at reducing dynamic cache energy by reducing the number of ways accessed, but introduce additional latency for incorrect way-predictions. While previous work has studied the impact of the increased latency for incorrect way-predictions, we show that the latency variability has a far greater effect as it forces replay of in-flight instructions on an incorrect way-prediction. To address the problem, we propose a solution that learns the confidence of the way-prediction and dynamically disables it when it is likely to mispredict. We further improve this approach by biasing the confidence to reduce latency variability further at the cost of reduced way-predictions. Our results show that instruction replay in a way-predictor reduces IPC by 6.9% due to 10% of the instructions being replayed. Our confidence-based way-predictor degrades IPC by only 2.9% by replaying just 3.4% of the instructions, reducing way-predictor cache energy overhead (compared to serial access cache) from 8.5% to 1.9%.

Place, publisher, year, edition, pages
2019.
Series
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2019-003
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:uu:diva-383596OAI: oai:DiVA.org:uu-383596DiVA, id: diva2:1316465
Available from: 2019-05-17 Created: 2019-05-17 Last updated: 2019-07-03Bibliographically approved
In thesis
1. Leveraging Existing Microarchitectural Structures to Improve First-Level Caching Efficiency
Open this publication in new window or tab >>Leveraging Existing Microarchitectural Structures to Improve First-Level Caching Efficiency
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Low-latency data access is essential for performance. To achieve this, processors use fast first-level caches combined with out-of-order execution, to decrease and hide memory access latency respectively. While these approaches are effective for performance, they cost significant energy, leading to the development of many techniques that require designers to trade-off performance and efficiency.

Way-prediction and filter caches are two of the most common strategies for improving first-level cache energy efficiency while still minimizing latency. They both have compromises as way-prediction trades off some latency for better energy efficiency, while filter caches trade off some energy efficiency for lower latency. However, these strategies are not mutually exclusive. By borrowing elements from both, and taking into account SRAM memory layout limitations, we proposed a novel MRU-L0 cache that mitigates many of their shortcomings while preserving their benefits. Moreover, while first-level caches are tightly integrated into the cpu pipeline, existing work on these techniques largely ignores the impact they have on instruction scheduling. We show that the variable hit latency introduced by way-misspredictions causes instruction replays of load dependent instruction chains, which hurts performance and efficiency. We study this effect and propose a variable latency cache-hit instruction scheduler, that identifies potential misschedulings, reduces instruction replays, reduces negative performance impact, and further improves cache energy efficiency.

Modern pipelines also employ sophisticated execution strategies to hide memory latency and improve performance. While their primary use is for performance and correctness, they require intermediate storage that can be used as a cache as well. In this work we demonstrate how the store-buffer, paired with the memory dependency predictor, can be used to efficiently cache dirty data; and how the physical register file, paired with a value predictor, can be used to efficiently cache clean data. These strategies not only improve both performance and energy, but do so with no additional storage and minimal additional complexity, since they recycle existing cpu structures to detect reuse, memory ordering violations, and misspeculations.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 42
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1821
Keywords
Energy Efficient Caching, Memory Architecture, Single Thread Performance, First-Level Caching, Out-of-Order Pipelines, Instruction Scheduling, Filter-Cache, Way-Prediction, Value-Prediction, Register-Sharing.
National Category
Computer Sciences
Identifiers
urn:nbn:se:uu:diva-383811 (URN)978-91-513-0681-0 (ISBN)
Public defence
2019-08-26, Sal VIII, Universitetshuset, Biskopsgatan 3, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2019-06-11 Created: 2019-05-22 Last updated: 2019-08-23

Open Access in DiVA

fulltext(267 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 267 kBChecksum SHA-512
e2020199295b074e3acc779510ba7fcd1a4f3aef7f9da9290c60274e3fa162f3ace8351e3577dbacf132b47d6b2e78b10ebd6ec16d5a9c6eaaa29dac904c89f8
Type fulltextMimetype application/pdf

Authority records BETA

Alves, RicardoKaxiras, StefanosBlack-Schaffer, David

Search in DiVA

By author/editor
Alves, RicardoKaxiras, StefanosBlack-Schaffer, David
By organisation
Computer Architecture and Computer Communication
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 35 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 137 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf