uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of Candidate Plasma Protein Biomarkers for Cervical Cancer Using the Multiplex Proximity Extension Assay
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0003-3445-6551
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.ORCID-id: 0000-0002-5056-9137
OLINK Prote, Uppsala Sci Pk, SE-75183 Uppsala, Sweden.
OLINK Prote, Uppsala Sci Pk, SE-75183 Uppsala, Sweden.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 18, nr 4, s. 735-743Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Human papillomavirus (HPV) is recommended as the primary test in cervical cancer screening, with co-testing by cytology for HPV-positive women to identify cervical lesions. Cytology has low sensitivity and there is a need to identify biomarkers that could identify dysplasia that are likely to progress to cancer. We searched for plasma proteins that could identify women with cervical cancer using the multiplex proximity extension assay (PEA). The abundance of 100 proteins were measured in plasma collected at the time of diagnosis of patients with invasive cervical cancer and in population controls using the Olink Multiplex panels CVD II, INF I, and ONC II. Eighty proteins showed increased levels in cases compared with controls. We identified a signature of 11 proteins (PTX3, ITGB1BP2, AXIN1, STAMPB, SRC, SIRT2, 4E-BP1, PAPPA, HB-EGF, NEMO and IL27) that distinguished cases and controls with a sensitivity of 0.96 at a specificity of 1.0. This signature was evaluated in a prospective replication cohort with samples collected before, at or after diagnosis and achieved a sensitivity of 0.78 and a specificity 0.56 separating samples collected at the time of diagnosis of invasive cancer from samples collected prior to diagnosis. No difference in abundance was seen between samples collected prior to diagnosis or after treatment as compared with population controls, indicating that this protein signature is mainly informative close to time of diagnosis. Further studies are needed to determine the optimal window in time prior to diagnosis for these biomarker candidates.

sted, utgiver, år, opplag, sider
2019. Vol. 18, nr 4, s. 735-743
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-383873DOI: 10.1074/mcp.RA118.001208ISI: 000466934700009PubMedID: 30692274OAI: oai:DiVA.org:uu-383873DiVA, id: diva2:1324929
Forskningsfinansiär
Swedish Foundation for Strategic Research Swedish Research CouncilSwedish Cancer SocietyTilgjengelig fra: 2019-06-14 Laget: 2019-06-14 Sist oppdatert: 2019-06-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Berggrund, MalinEnroth, StefanStålberg, KarinOlovsson, MattsGyllensten, Ulf

Søk i DiVA

Av forfatter/redaktør
Berggrund, MalinEnroth, StefanStålberg, KarinOlovsson, MattsGyllensten, Ulf
Av organisasjonen
I samme tidsskrift
Molecular & Cellular Proteomics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf