Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deformation Properties of Austenitic Stainless Steels with Different Stacking Fault Energies
Dalarna Univ, Mat Sci Grp, SE-79188 Falun, Sweden;Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.ORCID iD: 0000-0002-7355-1941
Dalarna Univ, Mat Sci Grp, SE-79188 Falun, Sweden.
Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden;Wigner Res Ctr Phys, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary.ORCID iD: 0000-0003-2832-3293
2018 (English)In: THERMEC 2018: 10Th International Conference on Processing and Manufacturing of Advanced Materials / [ed] Shabadi, R Ionescu, M Jeandin, M Richard, C Chandra, T, Trans Tech Publications, 2018, p. 190-197Conference paper, Published paper (Refereed)
Abstract [en]

In FCC metals a single parameter - stacking fault energy (SFE) - can help to predict the expectable way of deformation such as martensitic deformation, deformation twinning or pure dislocation glide. At low SFE one can expect the perfect dislocations to dissociate into partial dislocations, but at high SFE this separation is more restricted. The role of the magnitude of the stacking fault energy on the deformation microstructures and tensile behaviour of different austenitic steels have been investigated using uniaxial tensile testing and electron backscatter diffraction (EBSD). The SFE was determined by using quantum mechanical first-principles approach. By using plasticity models we make an attempt to explain and interpret the different strain hardening behaviour of stainless steels with different stacking fault energies.

Place, publisher, year, edition, pages
Trans Tech Publications, 2018. p. 190-197
Series
Materials Science Forum, ISSN 0255-5476 ; 941
Keywords [en]
Stainless Steel, Ab initio, Modelling, Deformation, SEM, EBSD, Tensile Testing, Thermec'2018
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:uu:diva-386383DOI: 10.4028/www.scientific.net/MSF.941.190ISI: 000468152500032ISBN: 978-3-0357-1208-7 (print)ISBN: 978-3-0357-3208-5 (electronic)OAI: oai:DiVA.org:uu-386383DiVA, id: diva2:1327512
Conference
10th International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications (THERMEC), JUL 09-13, 2018, Cite Sci Paris, Paris, FRANCE
Funder
Swedish Research CouncilSwedish Foundation for Strategic Research Vinnova, 2014-03374Swedish Energy AgencyCarl Tryggers foundation Available from: 2019-06-19 Created: 2019-06-19 Last updated: 2019-06-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Vitos, Levente

Search in DiVA

By author/editor
Molnar, DavidVitos, Levente
By organisation
Materials Theory
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf