uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploring ways to convey medical information during digital triage: A combined user research and machine learning approach
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
2019 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

The aim of this project was to investigate what information is critical to convey to nurses when performing digital triage. In addition, the project aimed to investigate how such information could be visualized. This was done through a combined user research and machine learning approach, which enabled for a more nuanced and thorough investigation compared to only making use of one of the two fields.

There is sparse research investigating how digital triaging can be improved and made more efficient. Therefore, this study has contributed with new and relevant insights. Three machine learning algorithms were implemented to predict the right level of care for a patient. Out of these three, the random forest classifier proved to have the best performance with an accuracy of 69.46%, also having the shortest execution time. Evaluating the random forest classifier, the most important features were stated to be the duration and progress of the symptoms, allergies to medicine, chronic diseases and the patient's own estimation of his/her health. These factors could all be confirmed by the user research approach, indicating that the results from the approaches were aligned. The results from the user research approach also showed that the patients' own description of their symptoms was of great importance. These findings served as a basis for a number of visualization decisions, aiming to make the triage process as accurate and efficient as possible.

sted, utgiver, år, opplag, sider
2019. , s. 102
Serie
UPTEC STS, ISSN 1650-8319 ; 19026
Emneord [en]
machine learning, user research, user experience, triage, auto triage, healthcare digitalization, personal health record, patient accessible electronic health record, patient reported outcome, medical information, visualization, design, prototypes, mediated communication
Emneord [sv]
maskininlärning, interaktionsdesign, användarupplevelse
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-386420OAI: oai:DiVA.org:uu-386420DiVA, id: diva2:1327558
Utdanningsprogram
Systems in Technology and Society Programme
Veileder
Examiner
Tilgjengelig fra: 2019-06-25 Laget: 2019-06-19 Sist oppdatert: 2019-08-15bibliografisk kontrollert

Open Access i DiVA

fulltext(18422 kB)42 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 18422 kBChecksum SHA-512
1a7c8e3ca212654fcd4d3e563b3fb3fea49a261cd4aae9fc8b285dcddb7157d61f42d3b30f7e6426974c29d2db9e9b1ae365cfb0b8dc5ce5c1f988500df36e61
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 42 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 203 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf