uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma
Lund Univ, Sect Oncol & Pathol, Dept Clin Sci, Barngatan 2 B, SE-22185 Lund, Sweden.
Lund Univ, Sect Oncol & Pathol, Dept Clin Sci, Barngatan 2 B, SE-22185 Lund, Sweden;Lund Univ, CEBMMS, Lund, Sweden.ORCID-id: 0000-0001-9626-0576
Lund Univ, Sect Oncol & Pathol, Dept Clin Sci, Barngatan 2 B, SE-22185 Lund, Sweden.
Lund Univ, Sect Oncol & Pathol, Dept Clin Sci, Barngatan 2 B, SE-22185 Lund, Sweden.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 25, nr 10, s. 3115-3127Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose: Liquid biopsy has great potential to improve the management of brain tumor patients at high risk of surgery-associated complications. Here, the aim was to explore plasma extracellular vesicle (plEV) immunoprofiling as a tool for noninvasive diagnosis of glioma. Experimental Design: PlEV isolation and analysis were optimized using advanced mass spectrometry, nanoparticle tracking analysis, and electron microscopy. We then established a new procedure that combines size exclusion chromatography isolation and proximity extension assay-based ultrasensitive immunoprofiling of plEV proteins that was applied on a well-defined glioma study cohort (n = 82). Results: Among potential candidates, we for the first time identify syndecan-1 (SDC1) as a plEV constituent that can discriminate between high-grade glioblastoma multiforme (GBM, WHO grade IV) and low-grade glioma [LGG, WHO grade II; area under the ROC curve (AUC): 0.81; sensitivity: 71%; specificity: 91%]. These findings were independently validated by ELISA. Tumor SDC1 mRNA expression similarly discriminated between GBM and LGG in an independent glioma patient population from The Cancer Genome Atlas cohort (AUC: 0.91; sensitivity: 79%; specificity: 91%). In experimental studies with GBM cells, we show that SDC1 is efficiently sorted to secreted EVs. Importantly, we found strong support of plEV(SDC1) originating from GBM tumors, as plEVSDC1 correlated with SDC1 protein expression in matched patient tumors, and plEV(SDC1) was decreased postoperatively depending on the extent of surgery. Conclusions: Our studies support the concept of circulating plEVs as a tool for noninvasive diagnosis and monitoring of gliomas and should move this field closer to the goal of improving the management of cancer patients.

sted, utgiver, år, opplag, sider
2019. Vol. 25, nr 10, s. 3115-3127
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-387278DOI: 10.1158/1078-0432.CCR-18-2946ISI: 000468064200021PubMedID: 30679164OAI: oai:DiVA.org:uu-387278DiVA, id: diva2:1329444
Forskningsfinansiär
Swedish Research Council, VR-MH 2014-3421Swedish Research Council, K2011-52X-21737-01-3EU, Horizon 2020Tilgjengelig fra: 2019-06-24 Laget: 2019-06-24 Sist oppdatert: 2019-06-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Freyhult, EvaBelting, Mattias

Søk i DiVA

Av forfatter/redaktør
Welinder, CharlotteFreyhult, EvaPernemalm, MariaBelting, Mattias
Av organisasjonen
I samme tidsskrift
Clinical Cancer Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 103 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf