Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Flexible Nanocellulose based Energy Storage Devices
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
Show others and affiliations
2019 (English)In: MRS Spring Meeting 2019 / [ed] MRS, Phoenix, 2019, article id ES03.06.01ES03.06.01Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

The strong need for the development of inexpensive, flexible, light-weight and environmentally friendly energy storage devices has resulted in large interest in new cellulose-based electrode materials that can be used in batteries and supercapacitors [1-3]. In this presentation it will be shown that flexible nanocellulose and polypyrrole composites, manufactured by chemical polymerization of e.g. pyrrole on a nanocellulose substrate, can be used as electrodes in charge storage devices containing either water or organic solvent based electrolytes. The aqueous flexible paper-based devices exhibit high charge storage capacities (e.g. 9 Wh/kg) as well as excellent power capabilities (e.g. 3.5 kW/kg) due to the large surface area (up to 250 m2/g) of the nanocellulose and the thin (i.e. 50 nm) layer of polypyrrole present on the nanocellulose fibers. The straightforward (papermaking) composite synthesis approach and the electrochemical properties of the resulting composites will be discussed. It will also be shown that high active mass paper electrodes [4-8] with mass loadings of up to 20 mg/cm2 can be employed at high current densities without significant loss of electrochemical performance as a result of the advantageous structure of the electrodes. Devices with unprecedented areal and volumetric cell capacitances (e.g. 5.7 F/cm2 and 240 F/cm3) that can cycle for thousands of cycles in aqueous electrolytes can likewise be realized. As the cellulose composites also can be used in lithium-ion batteries [9,10], functional (e.g. redox-active) separators [11] for lithium based batteries and in the realization of all-cellulose energy storage devices [12], the present materials provide new exciting possibilities for the development of green and foldable devices for a range of new applications, many of which are incompatible with conventional batteries and supercapacitors.

Place, publisher, year, edition, pages
Phoenix, 2019. article id ES03.06.01ES03.06.01
National Category
Materials Chemistry
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-389521OAI: oai:DiVA.org:uu-389521DiVA, id: diva2:1337739
Conference
MRS Materials Research Society & Exhibit, Spring Meeting 2019. Phoenix, AZ, USA 22-26/4 2019
Available from: 2019-07-16 Created: 2019-07-16 Last updated: 2020-04-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

https://www.mrs.org/spring2019

Authority records

Tammela, PetterPan, RuijunNyholm, Leif

Search in DiVA

By author/editor
Tammela, PetterPan, RuijunStrömme, MariaNyholm, Leif
By organisation
Nanotechnology and Functional MaterialsInorganic Chemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 535 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf