uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the Mechanism of Carbon Dioxide Reduction on Sn-Based Electrodes: Insights into the Role of Oxide Surfaces
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0002-5853-0819
Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil.
Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Catalysts, E-ISSN 2073-4344, Vol. 9, nr 8, artikel-id 636Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The electrochemical reduction of carbon dioxide into carbon monoxide, hydrocarbons and formic acid has offered an interesting alternative for a sustainable energy scenario. In this context, Sn-based electrodes have attracted a great deal of attention because they present low price and toxicity, as well as high faradaic efficiency (FE) for formic acid (or formate) production at relatively low overpotentials. In this work, we investigate the role of tin oxide surfaces on Sn-based electrodes for carbon dioxide reduction into formate by means of experimental and theoretical methods. Cyclic voltammetry measurements of Sn-based electrodes, with different initial degree of oxidation, result in similar onset potentials for the CO2 reduction to formate, ca. −0.8 to −0.9 V vs. reversible hydrogen electrode (RHE), with faradaic efficiencies of about 90–92% at −1.25 V (vs. RHE). These results indicate that under in-situ conditions, the electrode surfaces might converge to very similar structures, with partially reduced or metastable Sn oxides, which serve as active sites for the CO2 reduction. The high faradaic efficiencies of the Sn electrodes brought by the etching/air exposition procedure is ascribed to the formation of a Sn oxide layer with optimized thickness, which is persistent under in situ conditions. Such oxide layer enables the CO2 “activation”, also favoring the electron transfer during the CO2 reduction reaction due to its better electric conductivity. In order to elucidate the reaction mechanism, we have performed density functional theory calculations on different slab models starting from the bulk SnO and Sn6O4(OH)4 compounds with focus on the formation of -OH groups at the water-oxide interface. We have found that the insertion of CO2 into the Sn-OH bond is thermodynamically favorable, leading to the stabilization of the tin-carbonate species, which is subsequently reduced to produce formic acid through a proton-coupled electron transfer process. The calculated potential for CO2 reduction (E = −1.09 V vs. RHE) displays good agreement with the experimental findings and, therefore, support the CO2 insertion onto Sn-oxide as a plausible mechanism for the CO2 reduction in the potential domain where metastable oxides are still present on the Sn surface. These results not only rationalize a number of literature divergent reports but also provide a guideline for the design of efficient CO2 reduction electrocatalysts.

Ort, förlag, år, upplaga, sidor
2019. Vol. 9, nr 8, artikel-id 636
Nyckelord [en]
electrocatalysis, carbon dioxide conversion, formic acid, tin-based electrodes, tin oxide, tin-carbonate, reaction mechanism
Nationell ämneskategori
Fysikalisk kemi
Identifikatorer
URN: urn:nbn:se:uu:diva-390068DOI: 10.3390/catal9080636ISI: 000482799100047OAI: oai:DiVA.org:uu-390068DiVA, id: diva2:1340307
Forskningsfinansiär
StandUpVetenskapsrådetSwedish National Infrastructure for Computing (SNIC)Tillgänglig från: 2019-08-05 Skapad: 2019-08-05 Senast uppdaterad: 2019-10-02Bibliografiskt granskad

Open Access i DiVA

catalysts-09-00636(17118 kB)88 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 17118 kBChecksumma SHA-512
6758d1c7ccc64b99a3560102631d6449e0b06d70995f6e272d231b7c08a1519f96868c26358a30f313d8704b6e34d6d647dd6a59b7b657c857bdaad7fe4595fa
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Damas, Giane B.Araujo, Carlos Moyses

Sök vidare i DiVA

Av författaren/redaktören
Damas, Giane B.Araujo, Carlos Moyses
Av organisationen
Materialteori
Fysikalisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 88 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 87 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf