uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology
CADESS Med AB, Uppsala, Sweden.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk och experimentell patologi.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk och experimentell patologi.ORCID-id: 0000-0003-2777-8114
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. CADESS Med AB, Uppsala, Sweden.
2019 (engelsk)Inngår i: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 7, artikkel-id 125Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Digital pathology offers the potential for computer-aided diagnosis, significantly reducing the pathologists' workload and paving the way for accurate prognostication with reduced inter-and intra-observer variations. But successful computer-based analysis requires careful tissue preparation and image acquisition to keep color and intensity variations to a minimum. While the human eye may recognize prostate glands with significant color and intensity variations, a computer algorithm may fail under such conditions. Since malignancy grading of prostate tissue according to Gleason or to the International Society of Urological Pathology (ISUP) grading system is based on architectural growth patterns of prostatic carcinoma, automatic methods must rely on accurate identification of the prostate glands. But due to poor color differentiation between stroma and epithelium from the common stain hematoxylin-eosin, no method is yet able to segment all types of glands, making automatic prognostication hard to attain. We address the effect of tissue preparation on glandular segmentation with an alternative stain, Picrosirius red-hematoxylin, which clearly delineates the stromal boundaries, and couple this stain with a color decomposition that removes intensity variation. In this paper we propose a segmentation algorithm that uses image analysis techniques based on mathematical morphology and that can successfully determine the glandular boundaries. Accurate determination of the stromal and glandular morphology enables the identification of the architectural pattern that determine the malignancy grade and classify each gland into its appropriate Gleason grade or ISUP Grade Group. Segmentation of prostate tissue with the new stain and decomposition method has been successfully tested on more than 11000 objects including well-formed glands (Gleason grade 3), cribriform and fine caliber glands (grade 4), and single cells (grade 5) glands.

sted, utgiver, år, opplag, sider
2019. Vol. 7, artikkel-id 125
Emneord [en]
digital pathology, computational pathology, prostate cancer, prostate gland segmentation, histopathological stain, Picrosirius red, hematoxylin
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-391013DOI: 10.3389/fbioe.2019.00125ISI: 000475372000001PubMedID: 31334225OAI: oai:DiVA.org:uu-391013DiVA, id: diva2:1344500
Forskningsfinansiär
Swedish Research Council, 2009-5418Swedish Research Council, 2012-3667Vinnova, 2017-00444Vinnova, 2018-02137Tilgjengelig fra: 2019-07-05 Laget: 2019-08-21 Sist oppdatert: 2019-08-30bibliografisk kontrollert

Open Access i DiVA

fulltekst(1878 kB)79 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1878 kBChecksum SHA-512
e20958d0d6c492bbdc15a4cfdb0316a453779dad5181d80fd826736686259ad41f64d1b7aed17a615e9e5f288b93b60194db2e6b6548b889ca8c8a24740d9d5f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Tolf, AnnaDragomir, AncaCarlbom, Ingrid

Søk i DiVA

Av forfatter/redaktør
Tolf, AnnaDragomir, AncaCarlbom, Ingrid
Av organisasjonen
I samme tidsskrift
Frontiers in Bioengineering and Biotechnology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 79 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 184 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf