uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of Blood Vessel Effect on Fat-Intrabody Communication Using Numerical and Ex-Vivo Models at 2.45 GHZ
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Univ Tekn Malaysia Melaka, Fac Elect & Comp Engn, Durian Tunggal 76100, Malaysia.ORCID iD: 0000-0002-6899-1424
Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden;Menoufia Univ, Dept Elect & Elect Commun, Menoufia 32952, Egypt.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.ORCID iD: 0000-0003-4821-8087
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.ORCID iD: 0000-0002-5796-9838
Show others and affiliations
2019 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 89886-89900Article in journal (Refereed) Published
Abstract [en]

The potential offered by the intra-body communication (IBC) over the past few years has resulted in a spike of interest for the topic, specifically for medical applications. Fat-IBC is subsequently a novel alternative technique that utilizes fat tissue as a communication channel. This work aimed to identify such transmission medium and its performance in varying blood-vessel systems at 2.45 GHz, particularly in the context of the IBC and medical applications. It incorporated three-dimensional (3D) electromagnetic simulations and laboratory investigations that implemented models of blood vessels of varying orientations, sizes, and positions. Such investigations were undertaken by using ex-vivo porcine tissues and three blood-vessel system configurations. These configurations represent extreme cases of real-life scenarios that sufficiently elucidated their principal influence on the transmission. The blood-vessel models consisted of ex-vivo muscle tissues and copper rods. The results showed that the blood vessels crossing the channel vertically contributed to 5.1 dB and 17.1 dB signal losses for muscle and copper rods, respectively, which is the worst-case scenario in the context of fat-channel with perturbance. In contrast, blood vessels aligned-longitudinally in the channel have less effect and yielded 4.5 dB and 4.2 dB signal losses for muscle and copper rods, respectively. Meanwhile, the blood vessels crossing the channel horizontally displayed 3.4 dB and 1.9 dB signal losses for muscle and copper rods, respectively, which were the smallest losses among the configurations. The laboratory investigations were in agreement with the simulations. Thus, this work substantiated the fat-IBC signal transmission variability in the context of varying blood vessel configurations.

Place, publisher, year, edition, pages
2019. Vol. 7, p. 89886-89900
Keywords [en]
Blood vessel, channel characterization, fat-IBC, intrabody microwave communication, path loss
National Category
Medical Laboratory and Measurements Technologies
Identifiers
URN: urn:nbn:se:uu:diva-392068DOI: 10.1109/ACCESS.2019.2926646ISI: 000476817400018OAI: oai:DiVA.org:uu-392068DiVA, id: diva2:1349400
Funder
Vinnova, 2015-04159Vinnova, 2017-03568Swedish Foundation for Strategic Research , RIT17-0020EU, Horizon 2020, SINTEC-824984eSSENCE - An eScience CollaborationAvailable from: 2019-09-09 Created: 2019-09-09 Last updated: 2019-10-10Bibliographically approved
In thesis
1. Fat-IBC: A New Paradigm for Intra-body Communication
Open this publication in new window or tab >>Fat-IBC: A New Paradigm for Intra-body Communication
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the last two decades, a significant development in the field of medical technology occurred worldwide. This development is characterized by the materialization of various body implants and worn devices, that is devices attached to the body. These devices assist doctors and paramedical staff in effectively monitoring the patient’s health and helping increase patients’ average life expectancy. Furthermore, the various implants inside the human body serve different purposes according to the humans’ needs. As this situation became more prominent, the development of protocols and of reliable transmission media is becomes essential to improve the efficiency of inter-device communications. Positive prospects of the use of human tissue for intra-body communication were proven in recent studies. Fat tissues, for example, which also work as energy banks for human beings, can be potentially used in intra-body communications as transmission media. In this thesis, the fat (adipose) tissue’s function as an intra-body communication channel was investigated. Therefore, various simulations and experimentations were performed in order to characterize the reliability of the fat tissue in terms of communication, considering, for example, the effect that the variability in the thickness of adipose and muscular tissues could have on the communication performance, and the possible effect that the variability in the transmitted signal power could have on the data packet reception. Fat tissue displays superior performance in comparison to muscle tissue in the context of a low loss communication channel. For example, at 2.45 GHz, the path losses of ~0.7 dB/cm and ~1.9 dB/cm were observed for phantom and ex-vivo measurements, respectively. At a higher frequency of 5.8 GHz, the ex-vivo path loss was around 1.4 dB/cm. It was concluded from the results that the adipose tissue could function as a reliable medium supporting intra-body communication even under low power transmitted signals. Moreover, although the presence of thick blood vessels could degrade the signal strength, the results show that communication is possible even under the presence of perturbant tissues. Overall, the results of this thesis would provide a foundation in this area and assist researchers in developing innovative and solutions for intra-body communication.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 116
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1863
Keywords
Fat-Intrabody Communication, Fat Tissue, Microwave, Propagation, Data Packet Reception, Ex-vivo, Phantom, Communication, Reliability, Implants
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Microwave Technology
Identifiers
urn:nbn:se:uu:diva-393444 (URN)978-91-513-0770-1 (ISBN)
Public defence
2019-11-27, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2019-11-06 Created: 2019-10-10 Last updated: 2019-11-06

Open Access in DiVA

fulltext(31014 kB)69 downloads
File information
File name FULLTEXT01.pdfFile size 31014 kBChecksum SHA-512
05753c70afa2df5db1ebff7e6bc647cac467e0244da2b268d3421d4f47c1b9a380703c8a3ffbf6c2942c7d6c455d9729f72e61b067812020968c0886d4cba252
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Asan, Noor BadariahPerez, Mauricio DavidShah, Syaiful Redzwan MohdVelander, JacobVoigt, ThiemoAugustine, Robin

Search in DiVA

By author/editor
Asan, Noor BadariahPerez, Mauricio DavidShah, Syaiful Redzwan MohdVelander, JacobVoigt, ThiemoAugustine, Robin
By organisation
Solid State ElectronicsComputer Systems
In the same journal
IEEE Access
Medical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 69 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 158 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf