uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of whole-body PET/MRI with non-targeted metabolomics provides new insights into insulin sensitivity of various tissues
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräkningsbiologi och bioinformatik.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Klinisk diabetologi och metabolism.ORCID-id: 0000-0001-5498-3899
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Background: Alteration of various metabolites has been linked to type 2 diabetes (T2D) and insulin resistance. However, identifying significant associations between metabolites and tissue-specific alterations is challenging and requires a multi-omics approach. In this study, we aimed at discovering associations of metabolites from subcutaneous adipose tissue (SAT) and plasma with the volume, the fat fraction (FF) and the insulin sensitivity (Ki) of specific tissues using [18F]FDG PET/MRI.

Materials and Methods: In a cohort of 42 subjects with different levels of glucose tolerance (normal, prediabetes and T2D) matched for age and body-mass-index (BMI) we calculated associations between parameters of whole-body FDG PET/MRI during clamp and non-targeted metabolomics profiling for SAT and blood plasma. We also used a rule-based classifier to identify a large collection of prevalent patterns of co-dependent metabolites that characterize non-diabetes (ND) and T2D.

Results: The plasma metabolomics profiling revealed that hepatic fat content was positively associated with tyrosine, and negatively associated with lysoPC(P-16:0). Ki in visceral adipose tissue (VAT) and SAT, was positively associated with several species of lysophospholipids while the opposite applied to branched-chain amino acids (BCAA) and their intermediates. The adipose tissue metabolomics revealed a positive association between non-esterified fatty acids and, VAT and liver Ki. On the contrary, bile acids and carnitines in adipose tissue were inversely associated with VAT Ki. Finally, we presented a transparent machine-learning model that predicted ND or T2D in “unseen” data with an accuracy of 78%.

Conclusions: Novel associations of several metabolites from SAT and plasma with the FF, volume and insulin senstivity of various tissues throughout the body were discovered using PET/MRI and a new integrative multi-omics approach. A promising computational model that predicted ND and T2D with high certainty, suggested novel non-linear interdependencies of metabolites.

Nyckelord [en]
type 2 diabetes; metabolomics; imiomics; PET/MRI; insulin resistance;
Nationell ämneskategori
Endokrinologi och diabetes
Identifikatorer
URN: urn:nbn:se:uu:diva-393429OAI: oai:DiVA.org:uu-393429DiVA, id: diva2:1353235
Tillgänglig från: 2019-09-21 Skapad: 2019-09-21 Senast uppdaterad: 2019-09-22
Ingår i avhandling
1. Integrating multi-omics for type 2 diabetes: Data science and big data towards personalized medicine
Öppna denna publikation i ny flik eller fönster >>Integrating multi-omics for type 2 diabetes: Data science and big data towards personalized medicine
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Type 2 diabetes (T2D) is a complex metabolic disease characterized by multi-tissue insulin resistance and failure of the pancreatic β-cells to secrete sufficient amounts of insulin. Cells recruit transcription factors (TF) to specific genomic loci to regulate gene expression that consequently affects the protein and metabolite abundancies. Here we investigated the interplay of transcriptional and translational regulation, and its impact on metabolome and phenome for several insulin-resistant tissues from T2D donors. We implemented computational tools and multi-omics integrative approaches that can facilitate the selection of candidate combinatorial markers for T2D.

We developed a data-driven approach to identify putative regulatory regions and TF-interaction complexes. The cell-specific sets of regulatory regions were enriched for disease-related single nucleotide polymorphisms (SNPs), highlighting the importance of such loci towards the genomic stability and the regulation of gene expression. We employed a similar principle in a second study where we integrated single nucleus ribonucleic acid sequencing (snRNA-seq) with bulk targeted chromosome-conformation-capture (HiCap) and mass spectrometry (MS) proteomics from liver. We identified a putatively polymorphic site that may contribute to variation in the pharmacogenetics of fluoropyrimidines toxicity for the DPYD gene. Additionally, we found a complex regulatory network between a group of 16 enhancers and the SLC2A2 gene that has been linked to increased risk for hepatocellular carcinoma (HCC). Moreover, three enhancers harbored motif-breaking mutations located in regulatory regions of a cohort of 314 HCC cases, and were candidate contributors to malignancy.

In a cohort of 43 multi-organ donors we explored the alternating pattern of metabolites among visceral adipose tissue (VAT), pancreatic islets, skeletal muscle, liver and blood serum samples. A large fraction of lysophosphatidylcholines (LPC) decreased in muscle and serum of T2D donors, while a large number of carnitines increased in liver and blood of T2D donors, confirming that changes in metabolites occur in primary tissues, while their alterations in serum consist a secondary event. Next, we associated metabolite abundancies from 42 subjects to glucose uptake, fat content and volume of various organs measured by positron emission tomography/magnetic resonance imaging (PET/MRI). The fat content of the liver was positively associated with the amino acid tyrosine, and negatively associated with LPC(P-16:0). The insulin sensitivity of VAT and subcutaneous adipose tissue was positively associated with several LPCs, while the opposite applied to branch-chained amino acids. Finally, we presented the network visualization of a rule-based machine learning model that predicted non-diabetes and T2D in an “unseen” dataset with 78% accuracy.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 65
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1860
Nyckelord
type 2 diabetes, multi-omics, genomics, metabolomics, data science, machine learning, personalized medicine
Nationell ämneskategori
Bioinformatik (beräkningsbiologi) Endokrinologi och diabetes
Forskningsämne
Bioinformatik
Identifikatorer
urn:nbn:se:uu:diva-393440 (URN)978-91-513-0758-9 (ISBN)
Disputation
2019-11-11, C2:305, Biomedical Centrum (BMC), Husargatan 3, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
AstraZeneca
Tillgänglig från: 2019-10-18 Skapad: 2019-09-22 Senast uppdaterad: 2019-11-12

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Diamanti, KlevPereira, Maria JCavalli, MarcoPan, GangIngelsson, MartinFall, ToveLind, LarsRisérus, UlfEriksson, JanKullberg, JoelWadelius, ClaesAhlström, HåkanKomorowski, Jan

Sök vidare i DiVA

Av författaren/redaktören
Diamanti, KlevPereira, Maria JCavalli, MarcoPan, GangIngelsson, MartinFall, ToveLind, LarsRisérus, UlfEriksson, JanKullberg, JoelWadelius, ClaesAhlström, HåkanKomorowski, Jan
Av organisationen
Beräkningsbiologi och bioinformatikInstitutionen för kirurgiska vetenskaperKlinisk diabetologi och metabolismMedicinsk genetik och genomikScience for Life Laboratory, SciLifeLabGeriatrikMolekylär epidemiologiKardiologiMolekylär medicinCentrum för klinisk forskning, GävleborgUppsala kliniska forskningscentrum (UCR)Klinisk nutrition och metabolismRadiologiKlinisk epidemiologiInstitutionen för medicinska vetenskaper
Endokrinologi och diabetes

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 341 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf