uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic rat brain segmentation from MRI using statistical shape models and random forest
KTH Royal Inst Technol, Dept Biomed Engn & Hlth Syst, Halsovagen 11, S-14157 Huddinge, Sweden.
KTH Royal Inst Technol, Dept Biomed Engn & Hlth Syst, Halsovagen 11, S-14157 Huddinge, Sweden;Karolinska Inst, Dept Neurobiol Care Sci & Soc, Alfred Nobels Alle 23,D3, S-14152 Huddinge, Sweden.
Karolinska Inst, Dept Clin Neurosci, Tomtebodavagen 18A P1 5, S-17177 Stockholm, Sweden.
KTH Royal Inst Technol, Dept Biomed Engn & Hlth Syst, Halsovagen 11, S-14157 Huddinge, Sweden.
Vise andre og tillknytning
2019 (engelsk)Inngår i: MEDICAL IMAGING 2019: IMAGE PROCESSING / [ed] Angelini, ED Landman, BA, SPIE-INT SOC OPTICAL ENGINEERING , 2019, artikkel-id 109492OKonferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In MRI neuroimaging, the shimming procedure is used before image acquisition to correct for inhomogeneity of the static magnetic field within the brain. To correctly adjust the field, the brain's location and edges must first be identified from quickly-acquired low resolution data. This process is currently carried out manually by an operator, which can be time-consuming and not always accurate. In this work, we implement a quick and automatic technique for brain segmentation to be potentially used during the shimming. Our method is based on two main steps. First, a random forest classifier is used to get a preliminary segmentation from an input MRI image. Subsequently, a statistical shape model of the brain, which was previously generated from ground-truth segmentations, is fitted to the output of the classifier to obtain a model-based segmentation mask. In this way, a-priori knowledge on the brain's shape is included in the segmentation pipeline. The proposed methodology was tested on low resolution images of rat brains and further validated on rabbit brain images of higher resolution. Our results suggest that the present method is promising for the desired purpose in terms of time efficiency, segmentation accuracy and repeatability. Moreover, the use of shape modeling was shown to be particularly useful when handling low-resolution data, which could lead to erroneous classifications when using only machine learning-based methods.

sted, utgiver, år, opplag, sider
SPIE-INT SOC OPTICAL ENGINEERING , 2019. artikkel-id 109492O
Serie
Proceedings of SPIE, ISSN 0277-786X, E-ISSN 1996-756X ; 10949
Emneord [en]
brain MRI, image segmentation, shimming, random forest, statistical shape model
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-394733DOI: 10.1117/12.2512409ISI: 000483012700090ISBN: 978-1-5106-2546-4 (digital)ISBN: 978-1-5106-2545-7 (tryckt)OAI: oai:DiVA.org:uu-394733DiVA, id: diva2:1359543
Konferanse
Conference on Medical Imaging: Image Processing, FEB 19-21, 2019, San Diego, CA
Tilgjengelig fra: 2019-10-09 Laget: 2019-10-09 Sist oppdatert: 2019-10-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Andersson, Leif

Søk i DiVA

Av forfatter/redaktør
Andersson, Leif
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 6 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf