uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Be careful with your principal components
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Zooekologi.ORCID-id: 0000-0001-5436-6989
2019 (Engelska)Ingår i: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 73, nr 10, s. 2151-2158Artikel i tidskrift, Editorial material (Övrigt vetenskapligt) Published
Abstract [en]

Principal components analysis (PCA) is a common method to summarize a larger set of correlated variables into a smaller and more easily interpretable axes of variation. However, the different components need to be distinct from each other to be interpretable otherwise they only represent random directions. This is a fundamental assumption of PCA and, thus, needs to be tested every time. Sample correlation matrices will always result in a pattern of decreasing eigenvalues even if there is no structure. Tests are, therefore, needed to discern real patterns from illusionary ones. Furthermore, the loadings of the vectors need to be larger than expected by random data to be useful in the calculation of PC-scores. PC-scores calculated from nondistinct PC's have very large standard errors and cannot be used for biological interpretations. I give a number of examples to illustrate the potential problems with PCA. Robustness of the PC's increases with increasing sample size but not with the number of traits. I review a few simple test statistics appropriate for testing PC's and use a real-world example to illustrate how this can be done using randomization tests. PCA can be very useful but great care is needed to avoid spurious results.

Ort, förlag, år, upplaga, sidor
2019. Vol. 73, nr 10, s. 2151-2158
Nyckelord [en]
Correlations, principal components analysis, randomization, standard error
Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-398530DOI: 10.1111/evo.13835ISI: 000484684900001PubMedID: 31433858OAI: oai:DiVA.org:uu-398530DiVA, id: diva2:1375974
Tillgänglig från: 2019-12-06 Skapad: 2019-12-06 Senast uppdaterad: 2019-12-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Björklund, Mats

Sök vidare i DiVA

Av författaren/redaktören
Björklund, Mats
Av organisationen
Zooekologi
I samma tidskrift
Evolution
Evolutionsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 3 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf