Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Wide-Temperature-Range, Low-Cost, Fluorine-Free Battery Electrolyte Based On Sodium Bis(Oxalate)Borate
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-1442-6593
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0003-2538-8104
2021 (English)In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 33, no 4, p. 1130-1139Article in journal (Refereed) Published
Abstract [en]

Common battery electrolytes comprise organic carbonate solvents and fluorinated salts based on hexafluorophosphate (PF6-) anions. However, these electrolytes suffer from high flammability, limited operating temperature window, and high cost. To address those issues, we here propose a fluorine-free electrolyte based on sodium bis(oxalate)borate (NaBOB). Although lithium bis(oxalate)borate (LiBOB) has previously been investigated for lithium-ion batteries, NaBOB was considered too insoluble in organic solvents to be used in practice. Here, we show that NaBOB can be dissolved in mixtures of N-methyl-2-pyrrolidone (NMP) and trimethyl phosphate (TMP) and in each sole solvent. NMP provides higher solubility of NaBOB with a concentration of almost 0.7 M, resulting in an ionic conductivity up to 8.83 mS cm(-1) at room temperature. The physical and electrochemical properties of electrolytes based on NaBOB salt dissolved in NMP and TMP solvents and their binary mixtures are here investigated. The results include the thermal behavior of the sole solvents and their mixtures, flammability tests, NaBOB solubility, and ionic conductivity measurements of the electrolyte mixtures. Full-cell sodium-ion batteries based on hard carbon anodes and Prussian white cathodes were evaluated at room temperature and 55 degrees C using the aforementioned electrolytes. The results show a much improved performance compared to conventional electrolytes of 1 M NaPF6 in carbonate solvents at high currents and elevated temperatures. The proposed electrolytes provide a high ionic conductivity at a wide temperature range from room temperature to -60 degrees C as NMP-TMP mixtures have low freezing points. The flammability tests indicate that NaBOB in NMP-TMP electrolytes are nonflammable when the electrolyte contains more than 30 vol % TMP.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC American Chemical Society (ACS), 2021. Vol. 33, no 4, p. 1130-1139
National Category
Physical Chemistry Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-440077DOI: 10.1021/acs.chemmater.0c03570ISI: 000623043600004OAI: oai:DiVA.org:uu-440077DiVA, id: diva2:1545185
Funder
Swedish Energy Agency, 50177-1Swedish Energy Agency, 48198-1StandUpAvailable from: 2021-04-19 Created: 2021-04-19 Last updated: 2024-06-25Bibliographically approved
In thesis
1. Developing Electrolyte Solutions for Sodium-Ion Batteries: Challenging the Use of Hexafluorophosphate
Open this publication in new window or tab >>Developing Electrolyte Solutions for Sodium-Ion Batteries: Challenging the Use of Hexafluorophosphate
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The ability to store energy will be critical for achieving a functioning electrified society largely based on renewable energy sources. Batteries are anticipated to be a vital part of the infrastructure required to facilitate this energy storage. Electrolyte solutions are an essential component of most batteries, including sodium-ion batteries, which are emerging as a potentially more sustainable alternative to lithium-ion batteries.

This thesis critically assesses the use of sodium hexafluorophosphate as an electrolyte in sodium-ion batteries. Although widely used in lithium-ion batteries, the suitability of hexafluorophosphate for sodium-ion batteries needs re-evaluation. In this thesis, properties meriting the use of sodium hexafluorophosphate are explored, including its solubility in different organic solvents, conductivity, ability to prevent anodic aluminium dissolution, and cycling performance in battery cells. Sodium bis(oxalato)borate is investigated as an example of a fluorine-free alternative that may better align with the goal of increasing the sustainability of contemporary batteries. The main drawback of sodium bis(oxalato)borate is its significantly lower solubility compared to sodium hexafluorophosphate. However, at the same concentration in a given solvent, both electrolytes exhibit similar conductivities, challenging the notion that hexafluorophosphate enhances conductivity through low ion association.

Both electrolytes also prevent anodic aluminium dissolution. However, the use of sodium hexafluorophosphate does not consistently ensure adequate passivation of the negative electrode, suggesting that solvents or additives are more central for this process in these systems. In contrast, sodium bis(oxalato)borate appear to significantly contribute to the passivation of the negative electrode, even when used as an additive. As a sole electrolyte, sodium bis(oxalato)borate enable promising cycling performance in both lab-scale cells and in cells close to commercial standards. This research indicates that sodium hexafluorophosphate can be replaced with a fluorine-free electrolyte without compromising battery performance. The findings highlight the potential for more sustainable sodium-ion batteries and represent a step towards reducing the environmental impact of an electrified society.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2024. p. 54
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2417
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry; Chemistry with specialization in Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-533190 (URN)978-91-513-2169-1 (ISBN)
Public defence
2024-09-06, Lecture hall Heinz-Otto Kreiss, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2024-08-13 Created: 2024-06-25 Last updated: 2024-08-13

Open Access in DiVA

fulltext(4955 kB)952 downloads
File information
File name FULLTEXT01.pdfFile size 4955 kBChecksum SHA-512
f56f389ac2ceef9d13740197ae9682bc4eb9cc5f0616f7411f643e4d9b6eaac80e87d568589ef1437ef086e7742bdc0f99e58c148bd42953fa2f875939b656f3
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Mogensen, RonnieColbin, SimonYounesi, Reza

Search in DiVA

By author/editor
Mogensen, RonnieBuckel, AlexanderColbin, SimonYounesi, Reza
By organisation
Structural Chemistry
In the same journal
Chemistry of Materials
Physical ChemistryMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 953 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 214 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf