Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
2-Azanorbornyl alcohols: Very efficient Ligands for Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Aromatic Ketones. D. A
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry, Organic Chemistry.
Show others and affiliations
1999 In: J. Org. Chem., Vol. 65, p. 3116-Article in journal (Refereed) Published
Place, publisher, year, edition, pages
1999. Vol. 65, p. 3116-
Identifiers
URN: urn:nbn:se:uu:diva-89929OAI: oai:DiVA.org:uu-89929DiVA, id: diva2:161804
Available from: 2002-05-17 Created: 2002-05-17Bibliographically approved
In thesis
1. Asymmetric Transfer Hydrogenation of Aromatic Ketones: Catalyst Development and Mechanistic Studies
Open this publication in new window or tab >>Asymmetric Transfer Hydrogenation of Aromatic Ketones: Catalyst Development and Mechanistic Studies
2002 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis describes the development and evaluation of new chiral Ru(arene)(amino alcohol) catalysts for the transfer hydrogenation of aromatic ketones using isopropanol as the hydrogen source. Two mechanistic studies of the Ru(arene)(amino alcohol) catalyzed transfer hydrogenation of acetophenone were also conducted.

The Ru(arene)[(1S,3R,4R)-3.(Hydroxymethyl)-2-azabicyclo[2.2.1]heptane] catalyst was optimized for catalytic asymmetric transfer hydrogenation of aromatic ketones. The effect of substituents on the arene ligand on both selectivity and reactivity was investigated. The performance of the catalyst was also optimized by altering the structure of the chiral amino alcohol ligand. These optimizations resulted in a highly active and selective catalyst, Ru(p-cymene)[(R)-1-[(1S,2R,6S,7R,9R)-4,4-Dimethyl-3,5-dioxa-8-aza-tricyclo[5.2.1.00,0]dec-9-yl]-ethanol], for asymmetric transfer hydrogenation of aromatic ketones. This catalyst was capable of reducing acetophenone in 96% ee in 4 minutes at room temperature at a substrate to catalyst ratio of 200. Full conversion was reached even at a substrate to catalyst ratio of 5000 and the high enantioselectivity of 96% ee was maintained. A range of prochiral aromatic ketones with electron withdrawing or electron donating substituents in any position on the aromatic ring were reduced in short reaction times and with high enantioselectivity, up to 99% ee. Bulky aryl alkyl ketones were also reduced with high enantioselectivity.

A combined quantum chemical and kinetic investigation of the Ru(arene)(amino alcohol) catalyzed transfer hydrogenation of acetophenone was conducted. Three possible mechanisms were studied and the quantum chemical calculations indicated that the mechanism was concerted. In addition, a kinetic isotope study for the Ru(arene)(amino alcohol) catalyzed transfer hydrogenation of acetophenone was conducted. The determination of the kinetic isotope effect of the proton and hydride transfer showed that the proton and the hydride transfer were both rate-limiting and occurred in the same step. This result supports the proposed concerted mechanism.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2002. p. 49
Series
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 730
Keywords
Organic chemistry, transfer hydrogenation, aza-norbornyl structure, amino acid derivatives, amino alcohols, ruthenium, concerted mechanism, asymmetric catalysis., Organisk kemi
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:uu:diva-2151 (URN)91-554-5348-1 (ISBN)
Public defence
2002-06-07, The Svedberg salen, Kemikum, Uppsala, 13:15
Opponent
Available from: 2002-05-17 Created: 2002-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 631 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf