Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics. European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.ORCID iD: 0000-0002-2926-5702
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics.ORCID iD: 0000-0001-7328-0400
European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.;La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Melbourne, Vic 3086, Australia..
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Chemical and Bio-Molecular Physics. DESY, Ctr Free Electron Laser Sci, Notkestr 85, DE-22607 Hamburg, Germany.ORCID iD: 0000-0003-2638-1940
Show others and affiliations
2022 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, no 3, p. 1532-1543Article in journal (Refereed) Published
Abstract [en]

X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2022. Vol. 24, no 3, p. 1532-1543
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-468649DOI: 10.1039/d1cp03419gISI: 000733885500001PubMedID: 34939631OAI: oai:DiVA.org:uu-468649DiVA, id: diva2:1641056
Funder
Swedish Research Council, 2018-05973Swedish Research Council, 2019-03935Swedish Research Council, 2018-00740Swedish Foundation for Strategic Research, ICA16-0037Swedish National Infrastructure for Computing (SNIC)Available from: 2022-02-28 Created: 2022-02-28 Last updated: 2024-01-09Bibliographically approved
In thesis
1. Simulations of ultrafast photon-matter interactions for molecular imaging with X-ray lasers
Open this publication in new window or tab >>Simulations of ultrafast photon-matter interactions for molecular imaging with X-ray lasers
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biological structure determination has had new avenues of investigation opened due to the introduction of X-ray free-electron lasers (XFELs). These X-ray lasers provide an extreme amount of photons on ultrafast timescales used to probe matter, and in particular biomolecules. The high intensity of the X-rays destroys the sample, though not before structural information has been acquired. The unique properties of the probe provide the unprecedented opportunity to study the un-crystallized form of biological macromolecules, small crystals of biomolecules and their dynamics. 

In this work, we study processes in XFEL imaging experiments that could affect the achievable resolution of the protein structure in a diffraction experiment. Elastic scattering is the process which provides structural information and leaves the sample unperturbed. This interaction occurs far less often compared to damage inducing processes, such as photoabsorption, which leads to rapid ionization of the studied sample. By using density functional theory, we study the effect of ultrahigh charge states in small systems, such as amino acids and peptides, on the subsequent bond breaking and charge dynamics. Reproducible fragmentation patterns are studied in order to find features that could be understood in larger systems, such as proteins. 

Biomolecules are dynamical systems, and the currently used pulse duration is not short enough to outrun the movement of the atoms. The diffraction patterns acquired in an experiment are therefore an incoherent sum of slightly different conformations of the same system. Water can help to reduce these structural variations, but the water molecules themselves will then be a source of noise. Using classical molecular dynamics, we study the optimal amount of water that should be used to achieve the highest resolution. 

To simulate ultrafast molecular dynamics of larger systems such as proteins, we develop a hybrid Monte Carlo/molecular dynamics model. We utilize it to simulate the fragmentation dynamics of small proteins and investigate the possibility to extract structural information from the fragmentation patterns. For larger systems exposed to X-ray lasers, such as viruses and crystals, we develop a hybrid collisional-radiative and classical molecular dynamics approach. The method is used in several projects, both in theoretical studies and to support experiments conducted at XFEL facilities. In particular, we simulate the interaction of hexagonal ice with an X-ray laser, and show the structure makes a phase transition from the native crystal state to a plasma, while still partly retaining structural order. Furthermore, we note that the structural changes occur in an anisotropic manner, where different local structural configurations in ice decay on different time-scales. 

Preliminary experimental results show this anisotropic dynamics in an X-ray pump-probe serial femtosecond X-ray crystallography experiment performed on  I3C crystals. The real space dynamics as a function of probe delay given by our theoretical model and the experiment both show good agreement, where the iodine atoms exhibit correlated motion. The model is also used to calculate the expected atomic displacement and ionization in a hemoglobin crystal, revealing the time and length scales of the dynamics in the protein during the experiment. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2024. p. 95
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2353
Keywords
X-ray free-electron laser, molecular dynamics, radiation damage, plasma simulations, density functional theory¸ coherent diffractive imaging, protein structure, X-ray crystallography, single particle imaging
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-519472 (URN)978-91-513-2005-2 (ISBN)
Public defence
2024-02-29, Häggsalen, Ångström, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2024-02-08 Created: 2024-01-09 Last updated: 2024-02-08

Open Access in DiVA

fulltext(3964 kB)203 downloads
File information
File name FULLTEXT01.pdfFile size 3964 kBChecksum SHA-512
a9a1774d163e4ef10d7af98c79c5722b1e4d9e8a9a7db5dde12421cddf6e23eebb770293b3d88bec000945651d04442b48ce5c86360bc4a68949e7589b60d047
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records

Eliah Dawod, IbrahimTimneanu, NicusorCaleman, CarlGrånäs, Oscar

Search in DiVA

By author/editor
Eliah Dawod, IbrahimTimneanu, NicusorCaleman, CarlGrånäs, Oscar
By organisation
Chemical and Bio-Molecular PhysicsMaterials Theory
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 210 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 306 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf