uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt182",{id:"formSmash:upper:j_idt182",widgetVar:"widget_formSmash_upper_j_idt182",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt191_j_idt195",{id:"formSmash:upper:j_idt191:j_idt195",widgetVar:"widget_formSmash_upper_j_idt191_j_idt195",target:"formSmash:upper:j_idt191:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Numerical Computations with Fundamental SolutionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2005 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2005. , p. 51
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 45
##### Keywords [en]

fundamental solution, partial differential equation, partial difference equation, iterative method, preconditioner, boundary method
##### National Category

Computational Mathematics
##### Research subject

Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-5757ISBN: 91-554-6227-8 (print)OAI: oai:DiVA.org:uu-5757DiVA, id: diva2:166283
##### Public defence

2005-05-13, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt803",{id:"formSmash:j_idt803",widgetVar:"widget_formSmash_j_idt803",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt815",{id:"formSmash:j_idt815",widgetVar:"widget_formSmash_j_idt815",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt831",{id:"formSmash:j_idt831",widgetVar:"widget_formSmash_j_idt831",multiple:true}); Available from: 2005-04-21 Created: 2005-04-21 Last updated: 2014-09-03Bibliographically approved
##### List of papers

Numeriska beräkningar med fundamentallösningar (Swedish)

Two solution strategies for large, sparse, and structured algebraic systems of equations are considered. The first strategy is to construct efficient preconditioners for iterative solvers. The second is to reduce the sparse algebraic system to a smaller, dense system of equations, which are called the boundary summation equations.

The proposed preconditioners perform well when applied to equations that are discretizations of linear first order partial differential equations. Analysis shows that also very simple iterative methods converge in a number of iterations that is independent of the number of unknowns, if our preconditioners are applied to certain scalar model problems. Numerical experiments indicate that this property holds also for more complicated cases, and a flow problem modeled by the nonlinear Euler equations is treated successfully.

The reduction process is applicable to a large class of difference equations. There is no approximation involved in the reduction, so the solution of the original algebraic equations is determined exactly if the reduced system is solved exactly. The reduced system is well suited for iterative solution, especially if the original system of equations is a discretization of a first order differential equation. The technique is used for several problems, ranging from scalar model problems to a semi-implicit discretization of the compressible Navier-Stokes equations.

Both strategies use the concept of fundamental solutions, either of differential or difference operators. An algorithm for computing fundamental solutions of difference operators is also presented.

1. Preconditioners based on fundamental solutions$(function(){PrimeFaces.cw("OverlayPanel","overlay106800",{id:"formSmash:j_idt925:0:j_idt935",widgetVar:"overlay106800",target:"formSmash:j_idt925:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. An algorithm for computing fundamental solutions of difference operators$(function(){PrimeFaces.cw("OverlayPanel","overlay95683",{id:"formSmash:j_idt925:1:j_idt935",widgetVar:"overlay95683",target:"formSmash:j_idt925:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Discrete fundamental solution preconditioning for hyperbolic systems of PDE$(function(){PrimeFaces.cw("OverlayPanel","overlay111917",{id:"formSmash:j_idt925:2:j_idt935",widgetVar:"overlay111917",target:"formSmash:j_idt925:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Boundary Summation Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay96394",{id:"formSmash:j_idt925:3:j_idt935",widgetVar:"overlay96394",target:"formSmash:j_idt925:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Navier-Stokes equations for low Mach number flows solved by boundary summation$(function(){PrimeFaces.cw("OverlayPanel","overlay166282",{id:"formSmash:j_idt925:4:j_idt935",widgetVar:"overlay166282",target:"formSmash:j_idt925:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1962",{id:"formSmash:j_idt1962",widgetVar:"widget_formSmash_j_idt1962",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2029",{id:"formSmash:lower:j_idt2029",widgetVar:"widget_formSmash_lower_j_idt2029",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2030_j_idt2032",{id:"formSmash:lower:j_idt2030:j_idt2032",widgetVar:"widget_formSmash_lower_j_idt2030_j_idt2032",target:"formSmash:lower:j_idt2030:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});