uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Preliminary Design for a Spherical Inflatable Microrover for Planetary Exploration
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrostrukturteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrostrukturteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för astronomi och rymdfysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för astronomi och rymdfysik.
Vise andre og tillknytning
2008 (engelsk)Inngår i: Acta Astronautica, ISSN 0094-5765, E-ISSN 1879-2030, Vol. 63, nr 5-6, s. 618-631Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Spherical Mobile Investigator for Planetary Surface (SMIPS) concept aims at making use of the latest developments within extreme miniaturization of space systems. The introduction of Microelectromechanical Systems (MEMSs) and higher level Multifunctional Microsystems (MMSs) design solutions gives the robot high performance per weight unit. The untraditional spherical shape makes it easily maneuverable and thus provides a platform for scientific investigations of interplanetary bodies. Preliminary investigations of the SMIPS concept show several advantages over conventional robots and rovers in maneuverability, coverage, size, and mass. A locomotion proof-of-concept has been Studied together with a new distributed on-board data system configuration. This paper discusses theoretical robot analysis, an overall concept, possible science, enabling technologies, and how to perform scientific investigations. A preliminary design of an inflatable multifunctional shell is proposed.

sted, utgiver, år, opplag, sider
2008. Vol. 63, nr 5-6, s. 618-631
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-93967DOI: 10.1016/j.actaastro.2008.01.044ISI: 000258632900009OAI: oai:DiVA.org:uu-93967DiVA, id: diva2:167631
Tilgjengelig fra: 2006-01-19 Laget: 2006-01-19 Sist oppdatert: 2017-12-14bibliografisk kontrollert
Inngår i avhandling
1. Miniaturized Multifunctional System Architecture for Satellites and Robotics
Åpne denne publikasjonen i ny fane eller vindu >>Miniaturized Multifunctional System Architecture for Satellites and Robotics
2005 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis describes and evaluates the design of nanospacecraft based on advanced multifunctional microsystems building blocks. These systems bring substantial improvements of the performance of nanosatellites and enable new space exploration, e.g. interplanetary science missions using minute space probes. Microsystems, or microelectromechanical systems, allows for extreme miniaturization using heritage from IC industry. Reducing mass and volume of spacecraft gives large savings in terms of launch costs.

Definition and categorization of system and module level features in multifunctional microsystems are used to derive a spacecraft optimization algorithm which is compatible with commonly used concurrent engineering methods.

The miniaturization of modules enables modular spacecraft architectures comprising powerful multifunctional microsystems, which are applicable to satellites between 10 and 1000’s of kg.

This kind of complete spacecraft architecture has been developed for the NanoSpace-1 technology demonstrator satellite. The spacecraft bus uses multifunctional design to enable distributed intelligence and autonomy, graceful degradation, functional surfaces, and distributed power systems. The increase in performance of the new spacecraft architecture as compared with conventional nanosatellites is orders of magnitudes in terms of power storage, scientific payload mass ratio, pointing stabilization, and long time space operation.

This high-performance system-of-microsystems architecture has been successfully employed on two space robotic concepts: a miniaturized submersible vehicle for Jupiter’s Moon Europa and a miniaturized spherical robot. The submersible is enabled by miniaturization of electronics into 3-dimensional, vertically integrated multi-chip-modules together with new interconnection methods. These technologies enabled the submersible vehicle tube-shaped design within 20 cm length and 5 cm diameter. The spherical rover was developed for long range and networked science investigations of interplanetary bodies. The rover weighs 3.5 kg and is shown to endure direct reentry on Mars, which increases the ratio between the landed mobile payload mass and the initial mass in Mars orbit by a factor of 18.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2005. s. 39
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 110
Emneord
Space technology, Multifunctional design, Spacecraft, Robotics, Microengineering, MEMS, Exploration, Distributed intelligence, Mission Design, Rymdteknik
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-6130 (URN)91-554-6380-0 (ISBN)
Disputas
2005-11-25, 2005, Ångström, Regementsvägen 1, Uppsala, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2005-11-03 Laget: 2005-11-03 Sist oppdatert: 2009-10-07bibliografisk kontrollert
2. Integrated Communications and Thermal Management Systems for Microsystem-based Spacecraft: A Multifunctional Microsystem Approach
Åpne denne publikasjonen i ny fane eller vindu >>Integrated Communications and Thermal Management Systems for Microsystem-based Spacecraft: A Multifunctional Microsystem Approach
2006 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores the potential of multifunctional silicon-based microsystems for advanced integrated nanospacecraft (AIN). Especially, multifunctional microsystems with the coexistant functions of communications and thermal management implemented in multilayer silicon stacks are approached with systems study. Host vehicles, composed of microsystems, including micro/nano-spacecraft and spherical rovers are contemplated with respect to future performance and implications, system level design, and breadboard realizations. A module of great importance, named the "integrated communications and thermal management system for advanced integrated spacecraft" or ICTM, symbolizes the achievements within the field of self-contained microsystems and is a prioritized entity throughout the thesis. The ICTM is natively placable onboard all types of highly miniaturized craft.

The single AIN spacecraft and future clusters of these are investigated with respect to future full scale implementation of space systems designed and implemented with the distributed reconfigurable nanospacecraft cluster (DRNC) concept. Here, a true entanglement of microsystems technology (MST) and miniaturized spacecraft technology can revolutionize the applications, cost, and span of conceivable space missions.

An intended communications scenario supporting a data rate of 1 Mbps, for the transmitter, is achieved during 6 minutes with a maximum continuous power dissipation of 10 W. Thermal simulations support the expectation, of a thermally biased ICTM, that the module is capable of supporting this energy burst, by using the mechanisms of heat storage and heat switches, and still fulfilling the requirements imposed by AIN type of spacecraft. In addition, multiple functional surfaces for the ICTM are evaluated with respect to equilibrium temperature and process compatibility. The tailored surfaces provide temperature control using micromachining methods.

A design of a micromachined Ka-band front end with several MST enabled features is presented including e.g. vias, phase-shifters, and antennas. Similar antennas have been manufactured resulting in an evaluation of ring- and slot-antennas on silicon substrate. Based on a primitive version of the ICTM, a S-band patch antenna has been successfully implemented and characterized. Included in the thesis is a microthruster, an enabling technology for DRNC.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2006. s. 45
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 141
Emneord
Electronics, nanospacecraft, MST, MEMS, silicon, communication, thermal management, antenna, paraffin, PCM, multifunctional, microsystems, Elektronik
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-6316 (URN)91-554-6449-1 (ISBN)
Disputas
2006-02-10, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15
Opponent
Veileder
Tilgjengelig fra: 2006-01-19 Laget: 2006-01-19 Sist oppdatert: 2013-09-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Kratz, Henrik

Søk i DiVA

Av forfatter/redaktør
Kratz, Henrik
Av organisasjonen
I samme tidsskrift
Acta Astronautica

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1118 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf