Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Single-Adversary-Single-Detector Zero-Sum Game in Networked Control Systems
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control.ORCID iD: 0000-0001-5491-4068
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control.ORCID iD: 0000-0002-6608-250x
2022 (English)In: IFAC-PapersOnLine, E-ISSN 2405-8963, Vol. 55, no 13, p. 49-54Article in journal (Refereed) Published
Abstract [en]

This paper proposes a game-theoretic approach to address the problem of optimal sensor placement for detecting cyber-attacks in networked control systems. The problem is formulated as a zero-sum game with two players, namely a malicious adversary and a detector. Given a protected target vertex, the detector places a sensor at a single vertex to monitor the system and detect the presence of the adversary. On the other hand, the adversary selects a single vertex through which to conduct a cyber-attack that maximally disrupts the target vertex while remaining undetected by the detector. As our first contribution, for a given pair of attack and monitor vertices and a known target vertex, the game payoff function is defined as the output-to-output gain of the respective system. Then, the paper characterizes the set of feasible actions by the detector that ensures bounded values of the game payoff. Finally, an algebraic sufficient condition is proposed to examine whether a given vertex belongs to the set of feasible monitor vertices. The optimal sensor placement is then determined by computing the mixed-strategy Nash equilibrium of the zero-sum game through linear programming. The approach is illustrated via a numerical example of a 10-vertex networked control system with a given target vertex.

Place, publisher, year, edition, pages
Elsevier, 2022. Vol. 55, no 13, p. 49-54
Keywords [en]
Cyber-physical security, networked control systems, game theory
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:uu:diva-485955DOI: 10.1016/j.ifacol.2022.07.234ISI: 000852734000009OAI: oai:DiVA.org:uu-485955DiVA, id: diva2:1700407
Conference
9th IFAC Conference on Networked Systems (NECSYS), JUL 05-07, 2022, Zurich, Switzerland
Funder
Swedish Research Council, 2018-04396Swedish Research Council, 2021-06316Swedish Foundation for Strategic ResearchAvailable from: 2022-09-30 Created: 2022-09-30 Last updated: 2023-12-28Bibliographically approved
In thesis
1. Security Allocation in Networked Control Systems
Open this publication in new window or tab >>Security Allocation in Networked Control Systems
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Sustained use of critical infrastructure, such as electrical power and water distribution networks, requires efficient management and control. Facilitated by the advancements in computational devices and non-proprietary communication technology, such as the Internet, the efficient operation of critical infrastructure relies on network decomposition into interconnected subsystems, thus forming networked control systems. However, the use of public and pervasive communication channels leaves these systems vulnerable to cyber attacks. Consequently, the critical infrastructure is put at risk of suffering operation disruption and even physical damage that would inflict financial costs as well as pose a hazard to human health. Therefore, security is crucial to the sustained efficient operation of critical infrastructure. This thesis develops a framework for evaluating and improving the security of networked control systems in the face of cyberattacks. The considered security problem involves two strategic agents, namely a malicious adversary and a defender, pursuing their specific and conflicting goals. The defender aims to efficiently allocate defense resources with the purpose of detecting malicious activities. Meanwhile, the malicious adversary simultaneously conducts cyber attacks and remains stealthy to the defender. We tackle the security problem by proposing a game-theoretic framework and characterizing its main components: the payoff function, the action space, and the available information for each agent. Especially, the payoff function is characterized based on the output-to-output gain security metric that fully explores the worst-case attack impact. Then, we investigate the properties of the game and how to efficiently compute its equilibrium. Given the combinatorial nature of the defender’s actions, one important challenge is to alleviate the computational burden. To overcome this challenge, the thesis contributes several system- and graph-theoretic conditions that enable the defender to shrink the action space, efficiently allocating the defense resources. The effectiveness of the proposed framework is validated through numerical examples. 

Place, publisher, year, edition, pages
Uppsala: Uppsala universitet, 2023. p. 79
Series
Information technology licentiate theses: Licentiate theses from the Department of Information Technology, ISSN 1404-5117 ; 2023-003
National Category
Control Engineering
Research subject
Electrical Engineering with specialization in Automatic Control
Identifiers
urn:nbn:se:uu:diva-518890 (URN)
Presentation
2023-10-13, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2024-01-31 Created: 2023-12-28 Last updated: 2024-01-31Bibliographically approved

Open Access in DiVA

fulltext(856 kB)83 downloads
File information
File name FULLTEXT01.pdfFile size 856 kBChecksum SHA-512
1f3e653013dd4970e2bcb5ca45cece9565ec1029ac272262dd528d3ef26645fd0969a1190ebc4ee6dadb6b630f99e7ddb0931cd1c732162dac726890c9a2acab
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Nguyen, Anh TungTeixeira, AndréMedvedev, Alexander

Search in DiVA

By author/editor
Nguyen, Anh TungTeixeira, AndréMedvedev, Alexander
By organisation
Division of Systems and Control
In the same journal
IFAC-PapersOnLine
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 83 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf