uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Percolative drug diffusion from cylindrical matrix systems with unsealed boundaries
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och funktionella material)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och funktionella material)ORCID-id: 0000-0002-5496-9664
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaci.
2007 (engelsk)Inngår i: Journal of Pharmaceutical Sciences, ISSN 0022-3549, E-ISSN 1520-6017, Vol. 96, nr 11, s. 3087-3099Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Release of NaCl in both the axial and radial directions from cylindrical ethyl cellulose tablets were investigated by the alternating ionic current method. The pore structure of the investigated binary mixtures was examined by mercury porosimetry and scanning electron microscopy, and the nm range fractal surface dimension of tablet pore walls was extracted from krypton gas adsorption isotherms. The drug release was shown to consist of two overlapping processes of which the first was ascribed to dissolution of NaCl close to the tablet boundary followed by subsequent diffusion through a thin ethyl cellulose layer and a second from which a porosity percolation threshold of 0.22 could be extracted. As well, a cross-over to effective-medium behaviour at a porosity of 0.44 was observed. The presented findings showed that drug release from matrix tablets with unsealed tablet walls substantially differs from earlier investigated release processes for which the drug has only been allowed to escape through one of the flat tablet surfaces. Thus, the present study brings forward knowledge important for the tailoring of controlled drug delivery vehicles with optimum release patterns.

sted, utgiver, år, opplag, sider
2007. Vol. 96, nr 11, s. 3087-3099
Emneord [en]
adsorption, structure-transport relationship, polymeric drug delivery systems, drug transport, controlled release
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-95753DOI: 10.1002/jps.20915ISI: 000250618700020PubMedID: 17721939OAI: oai:DiVA.org:uu-95753DiVA, id: diva2:170084
Tilgjengelig fra: 2007-04-13 Laget: 2007-04-13 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Inngår i avhandling
1. Drug Diffusion and Nano Excipient Formation Studied by Electrodynamic Methods
Åpne denne publikasjonen i ny fane eller vindu >>Drug Diffusion and Nano Excipient Formation Studied by Electrodynamic Methods
2007 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

New smart drugs demand new smart drug delivery systems and also new smart analysis methods for the drug delivery process and material characterization. This thesis contributes to the field by introducing a new electrodynamic approach for studying the drug diffusion proc-esses as well as the formation of a new type of drug delivery systems, the so called mesoporous nano excipients.

Drug diffusion processes from different pharmaceutical materials were examined. The transport of charged drug substances was investigated by electrodynamic methods; either as a release process governed by diffusion using the alternating ionic current method or by applying a voltage, sinusoidal or dc, to force the drug ions to move in an electric field.

Temperature-dependent drug release from microcrystalline cellulose tablets was examined in order to extract information about the diffu-sion process. Percolation theory was also employed to binary mixtures of an insoluble and electrically insulating matrix material together with a soluble and ionic conducting drug. Further, dielectric spectros-copy was proven to be a powerful method for examining the state of vesicle formation of drug and surfactant molecules in a carbopol gel. Finally, a new potential class of pharmaceutical materials were exam-ined, namely the AMS-n mesoporous materials, showing that the al-ternating ionic current method is powerful both in the study of the synthesis of and in the release process from these.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2007. s. 73
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 293
Emneord
Functional materials, drug release, electrodynamic methods, diffusion, Funktionella material
Identifikatorer
urn:nbn:se:uu:diva-7818 (URN)978-91-554-6864-4 (ISBN)
Disputas
2007-05-07, 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00
Opponent
Veileder
Tilgjengelig fra: 2007-04-13 Laget: 2007-04-13 Sist oppdatert: 2015-09-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Brohede, UlrikaValizadeh, SimaStrømme, MariaFrenning, Göran

Søk i DiVA

Av forfatter/redaktør
Brohede, UlrikaValizadeh, SimaStrømme, MariaFrenning, Göran
Av organisasjonen
I samme tidsskrift
Journal of Pharmaceutical Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 917 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf