Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unsupervised dynamic modeling of medical image transformations
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Artificial Intelligence.ORCID iD: 0000-0002-9013-949x
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Artificial Intelligence.ORCID iD: 0000-0002-9099-3522
Elekta Instrument AB, Stockholm, Sweden..
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Artificial Intelligence.ORCID iD: 0000-0001-5183-234X
2022 (English)In: 2022 25th International Conference on Information Fusion (FUSION 2022), Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 1-7Conference paper, Published paper (Refereed)
Abstract [en]

Spatiotemporal imaging has applications in e.g. cardiac diagnostics, surgical guidance, and radiotherapy monitoring, In this paper, we explain the temporal motion by identifying the underlying dynamics, only based on the sequential images. Our dynamical model maps the inputs of observed high-dimensional sequential images to a low-dimensional latent space wherein a linear relationship between a hidden state process and the lower-dimensional representation of the inputs holds. For this, we use a conditional variational auto-encoder (CVAE) to nonlinearly map the higher dimensional image to a lower-dimensional space, wherein we model the dynamics with a linear Gaussian state-space model (LG-SSM). The model, a modified version of the Kalman variational auto-encoder, is end-to-end trainable, and the weights, both in the CVAE and LG-SSM, are simultaneously updated by maximizing the evidence lower bound of the marginal likelihood. In contrast to the original model, we explain the motion with a spatial transformation from one image to another. This results in sharper reconstructions and the possibility of transferring auxiliary information, such as segmentation, through the image sequence. Our experiments, on cardiac ultrasound time series, show that the dynamic model outperforms traditional image registration in execution time, to a similar performance. Further, our model offers the possibility to impute and extrapolate for missing samples.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022. p. 1-7
Keywords [en]
Dynamic system, State-space models, Deep learning, Generative models, Sequential modeling, Image registration
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:uu:diva-486389DOI: 10.23919/FUSION49751.2022.9841369ISI: 000855689000139ISBN: 978-1-7377497-2-1 (electronic)ISBN: 978-1-6654-8941-6 (print)OAI: oai:DiVA.org:uu-486389DiVA, id: diva2:1702406
Conference
25th International Conference of Information Fusion (FUSION), JUL 04-07, 2022, Linkoping, SWEDEN
Funder
Knut and Alice Wallenberg FoundationSwedish Foundation for Strategic Research, SM19-0029Available from: 2022-10-10 Created: 2022-10-10 Last updated: 2024-10-01Bibliographically approved
In thesis
1. Motion Estimation from Temporally and Spatially Sparse Medical Image Sequences
Open this publication in new window or tab >>Motion Estimation from Temporally and Spatially Sparse Medical Image Sequences
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Motion is a fundamental aspect of human life. Even during low-intensity activities, we move. The lungs absorb oxygen when inhaling and desorb carbon dioxide when exhaling. The heart pumps oxygenated blood to the body's organs. Wave-like contractions help us process food. All such events cause motion within the body. Being able to describe motion offers benefits in medical health, e.g., analysis of organ functions and guidance during ongoing treatments. The motion can be captured by acquiring medical images in real-time. However, in several cases, the resolution of the medical images is limited by the acquisition time, and the images suffer from low temporal and spatial resolution. One such example appears in radiotherapy, e.g., by acquiring 2D cine-MRIs for monitoring ongoing treatment sessions. An accurate estimation of the entire 3D motion provides a more realistic estimate of the actual delivery outcome and is a necessary feature for more advanced procedures, like real-time beam adaptation.

In this thesis, we develop methods to estimate the motion from temporally and spatially sparse medical image sequences. We start by extracting knowledge from optimization-based medical image registration methods and showing how deep learning can reduce execution time. Then, we model the motion dynamics as a sequence of deformable image registrations. Due to the high dimensionality of the medical image, we model the dynamics in a lower dimensional space. For this, we apply dimension reduction techniques like principal component analysis and variational auto-encoders. The dynamic is then modeled using state-space representations and diffusion probabilistic models to solve the two inference problems of forecasting and simulating the state processes.

The main contribution lies in the five presented scientific articles, where we deal with the problem of temporally and spatially sparse sequences separately and then combine them into a uniform solution. The proposed methods are evaluated on medical images of several modalities, such as MRI, CT, and ultrasound, and finally demonstrated on the use case in the radiotherapy domain, where more accurate motion estimates could spare healthy tissues from being exposed to radiation dose.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2024. p. 81
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2456
Keywords
Motion modeling, Medical image registration, Deep learning, Dimensionality reduction, Dynamic modeling
National Category
Medical Image Processing
Research subject
Artificial Intelligence
Identifiers
urn:nbn:se:uu:diva-538082 (URN)978-91-513-2244-5 (ISBN)
Public defence
2024-12-05, 101195, Heinz-Otto Kreiss, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Available from: 2024-10-28 Created: 2024-10-01 Last updated: 2024-10-28

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Gunnarsson, NiklasSjölund, JensSchön, Thomas B.

Search in DiVA

By author/editor
Gunnarsson, NiklasSjölund, JensSchön, Thomas B.
By organisation
Division of Systems and ControlArtificial Intelligence
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf