uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
Visa övriga samt affilieringar
2008 (Engelska)Ingår i: Quarterly reviews of biophysics (Print), ISSN 0033-5835, E-ISSN 1469-8994, Vol. 41, nr 3-4, s. 181-204Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis or the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed, The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 10(11)-10(12) photonS mu M (2) in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.

Ort, förlag, år, upplaga, sidor
2008. Vol. 41, nr 3-4, s. 181-204
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:uu:diva-96326DOI: 10.1017/S003358350800471XISI: 000262098500001OAI: oai:DiVA.org:uu-96326DiVA, id: diva2:170865
Tillgänglig från: 2007-10-24 Skapad: 2007-10-24 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
Ingår i avhandling
1. Interaction of Ultrashort X-ray Pulses with Material
Öppna denna publikation i ny flik eller fönster >>Interaction of Ultrashort X-ray Pulses with Material
2007 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Radiation damage limits the resolution in imaging experiments. Damage is caused by energy deposited into the sample during exposure. Ultrashort and extremely bright X-ray pulses from free-electron lasers (FELs) offer the possibility to outrun key damage processes, and temporarily improve radiation tolerance. Theoretical models indicate that high detail-resolutions could be realized on non-crystalline samples with very short pulses, before plasma expansion.

Studies presented here describe the interaction of a very intense and ultrashort X-ray pulse with material, and investigate boundary conditions for flash diffractive imaging both theoretically and experimentally. In the hard X-ray regime, predictions are based on particle simulations with a continuum formulation that accounts for screening from free electrons.

First experimental results from the first soft X-ray free-electron laser, the FLASH facility in Hamburg, confirm the principle of flash imaging, and provide the first validation of our theoretical models. Specifically, experiments on nano-fabricated test objects show that an interpretable image can be obtained to high resolution before the sample is vaporized. Radiation intensity in these experiments reached 10^14 W/cm^2, and the temperature of the sample rose to 60000 Kelvin after the 25 femtosecond pulse left the sample. Further experiments with time-delay X-ray holography follow the explosion dynamics over some picoseconds after illumination.

Finally, this thesis presents results from biological flash-imaging studies on living cells. The model is based on plasma calculations and fluid-like motions of the sample, supported by the time-delay measurements. This study provides an estimate for the achievable resolutions as function of wavelength and pulse length. The technique was demonstrated by our team in an experiment where living cells were exposed to a single shot from the FLASH soft X-ray laser.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2007. s. 76
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 356
Nyckelord
free-electron laser, dense plasma, X-ray, radiation damage, laser physics, nano-plasma, Molecular Dynamics
Nationell ämneskategori
Biofysik
Identifikatorer
urn:nbn:se:uu:diva-8274 (URN)978-91-554-6996-2 (ISBN)
Disputation
2007-11-15, B41, BMC, Husargatan 3, Uppsala, 09:00
Opponent
Handledare
Tillgänglig från: 2007-10-24 Skapad: 2007-10-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Timneanu, NicusorMaia, Filipe R. N. C.Hajdu, Janos

Sök vidare i DiVA

Av författaren/redaktören
Timneanu, NicusorMaia, Filipe R. N. C.Hajdu, Janos
Av organisationen
Molekylär biofysik
I samma tidskrift
Quarterly reviews of biophysics (Print)
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 689 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf