uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt150",{id:"formSmash:upper:j_idt150",widgetVar:"widget_formSmash_upper_j_idt150",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt151_j_idt154",{id:"formSmash:upper:j_idt151:j_idt154",widgetVar:"widget_formSmash_upper_j_idt151_j_idt154",target:"formSmash:upper:j_idt151:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Optimal realizations of generic 5-point metricsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2009 (English)In: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 30, no 5, p. 1164-1171Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2009. Vol. 30, no 5, p. 1164-1171
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-96394DOI: 10.1016/j.ejc.2008.09.021ISI: 000265517800014OAI: oai:DiVA.org:uu-96394DiVA, id: diva2:170954
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt460",{id:"formSmash:j_idt460",widgetVar:"widget_formSmash_j_idt460",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt466",{id:"formSmash:j_idt466",widgetVar:"widget_formSmash_j_idt466",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt472",{id:"formSmash:j_idt472",widgetVar:"widget_formSmash_j_idt472",multiple:true}); Available from: 2007-11-07 Created: 2007-11-07 Last updated: 2017-12-14Bibliographically approved
##### In thesis

Given a metric cl oil a finite set X, a realization of d is a triple (G, phi, omega) consisting of a graph G = (V, E), a labeling phi : X -> V, and a weighting omega : E -> R->0 such that for all x, y is an element of X the length of any shortest path in G between phi(x) and phi(y) equals d(x, y). Such a realization is called optimal if parallel to G parallel to := Sigma(e is an element of E) omega(e) is minimal amongst all realizations of d. In this paper we will consider optimal realizations of generic five-point metric spaces. In particular, we show that there is a canonical subdivision C Of the metric fail of five-point metrics into cones such that (i) every metric d in the interior of a cone C is an element of C has a unique optimal realization (G, phi, omega), (ii) if d' is also in the interior of C with optimal realization (G', phi', omega') then (G, phi) and (G', phi') are isomorphic as labeled graphs, and (iii) any labeled graph that underlies all optimal realizations of the metrics in the interior of some cone C e C must belong to one of three isomorphism classes.

1. Optimal and Hereditarily Optimal Realizations of Metric Spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay170958",{id:"formSmash:j_idt787:0:j_idt791",widgetVar:"overlay170958",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1231",{id:"formSmash:j_idt1231",widgetVar:"widget_formSmash_j_idt1231",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1289",{id:"formSmash:lower:j_idt1289",widgetVar:"widget_formSmash_lower_j_idt1289",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1291_j_idt1294",{id:"formSmash:lower:j_idt1291:j_idt1294",widgetVar:"widget_formSmash_lower_j_idt1291_j_idt1294",target:"formSmash:lower:j_idt1291:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});