uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt150",{id:"formSmash:upper:j_idt150",widgetVar:"widget_formSmash_upper_j_idt150",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt151_j_idt154",{id:"formSmash:upper:j_idt151:j_idt154",widgetVar:"widget_formSmash_upper_j_idt151_j_idt154",target:"formSmash:upper:j_idt151:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Concerning the relationship between realizations and tight spans of finite metricsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2007 (English)In: Discrete & Computational Geometry, ISSN 0179-5376, E-ISSN 1432-0444, Vol. 38, no 3, p. 605-614Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 38, no 3, p. 605-614
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-96396DOI: 10.1007/s00454-007-1352-5ISI: 000249696700007OAI: oai:DiVA.org:uu-96396DiVA, id: diva2:170956
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt460",{id:"formSmash:j_idt460",widgetVar:"widget_formSmash_j_idt460",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt466",{id:"formSmash:j_idt466",widgetVar:"widget_formSmash_j_idt466",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt472",{id:"formSmash:j_idt472",widgetVar:"widget_formSmash_j_idt472",multiple:true}); Available from: 2007-11-07 Created: 2007-11-07 Last updated: 2017-12-14Bibliographically approved
##### In thesis

Given a metric d on a finite set X, a realization of d is a weighted graph $G=(V,E,w\colon \ E \to {\Bbb R}_{>0})$ with $X \subseteq V$ such that for all $x,y \in X$ the length of any shortest path in G between x and y equals d(x,y). In this paper we consider two special kinds of realizations, optimal realizations and hereditarily optimal realizations, and their relationship with the so-called tight span. In particular, we present an infinite family of metrics {d_{k}}_{k≥1}, and—using a new characterization for when the so-called underlying graph of a metric is an optimal realization that we also present—we prove that d_{k} has (as a function of k) exponentially many optimal realizations with distinct degree sequences. We then show that this family of metrics provides counter-examples to a conjecture made by Dress in 1984 concerning the relationship between optimal realizations and the tight span, and a negative reply to a question posed by Althofer in 1988 on the relationship between optimal and hereditarily optimal realizations.

1. Optimal and Hereditarily Optimal Realizations of Metric Spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay170958",{id:"formSmash:j_idt787:0:j_idt791",widgetVar:"overlay170958",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1231",{id:"formSmash:j_idt1231",widgetVar:"widget_formSmash_j_idt1231",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1289",{id:"formSmash:lower:j_idt1289",widgetVar:"widget_formSmash_lower_j_idt1289",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1291_j_idt1294",{id:"formSmash:lower:j_idt1291:j_idt1294",widgetVar:"widget_formSmash_lower_j_idt1291_j_idt1294",target:"formSmash:lower:j_idt1291:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});