uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Kostant's problem and parabolic subgroups
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Algebra, geometri och logik.
2010 (Engelska)Ingår i: Glasgow Mathematical Journal, ISSN 0017-0895, E-ISSN 1469-509X, Vol. 52, s. 19-32Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Let g be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I subset of S let g(I) be the corresponding semi-simple subalgebra of g. Denote by W-I the Weyl group of g(I) and let w(o) and w(o)(I) be the longest elements of W and W-I, respectively In this paper we show that the answer to Kostant's problem, i.e. whether the Universal enveloping algebra subjects onto the space of all ad-finite linear transformations of a given module, is the same for the simple highest weight g(I)-module L-I(x) of highest weight x . 0, x is an element of W-I, as the answer for the simple highest weight g-module L(xw(o)(l)w(o)) of highest weight xw(o)(I)w(o). 0. We also give a new description Of the unique quasi-simple quotient of the Verma module Delta(e) with the same annihilator as L(y), y is an element of W.

Ort, förlag, år, upplaga, sidor
2010. Vol. 52, s. 19-32
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:uu:diva-97778DOI: 10.1017/S0017089509990127ISI: 000273383200002OAI: oai:DiVA.org:uu-97778DiVA, id: diva2:172845
Tillgänglig från: 2008-11-19 Skapad: 2008-11-19 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
Ingår i avhandling
1. Tensor Products on Category O and Kostant's Problem
Öppna denna publikation i ny flik eller fönster >>Tensor Products on Category O and Kostant's Problem
2008 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of a summary and three papers, concerning some aspects of representation theory for complex finite dimensional semi-simple Lie algebras with focus on the BGG-category O.

Paper I is motivated by the many useful properties of functors on category O given by tensoring with finite dimensional modules, such as projective functors and translation functors. We study properties of functors on O given by tensoring with arbitrary (possibly infinite dimensional) modules. Such functors give rise to a faithful action of O on itself via exact functors which preserve tilting modules, via right exact functors which preserve projective modules, and via left exact functors which preserve injective modules.

Papers II and III both deal with Kostant's problem. In Paper II we establish an effective criterion equivalent to the answer to Kostant's problem for simple highest weight modules, in the case where the Lie algebra is of type A. Using this, we derive some old and new results which answer Kostant's problem in special cases. An easy sufficient condition derived from this criterion using Kazhdan-Lusztig combinatorics allows for a straightforward computational check using a computer, by which we get a complete answer for simple highest weight modules in the principal block of O for algebras of rank less than 5.

In Paper III we relate the answer to Kostant's problem for certain modules to the answer to Kostant's problem for a module over a subalgebra. We also give a new description of a certain quotient of the dominant Verma module, which allows us to give a bound on the multiplicities of simple composition factors of primitive quotients of the universal enveloping algebra.

Ort, förlag, år, upplaga, sidor
Uppsala: Universitetsbiblioteket, 2008. s. 36
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 59
Nyckelord
Semi-simple Lie algebras, Tensor products, Kostant's problem, Primitive quotients
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:uu:diva-9388 (URN)978-91-506-2034-4 (ISBN)
Disputation
2008-12-11, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15
Opponent
Handledare
Tillgänglig från: 2008-11-19 Skapad: 2008-11-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext
Av organisationen
Algebra, geometri och logik
I samma tidskrift
Glasgow Mathematical Journal
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 575 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf