uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt149",{id:"formSmash:upper:j_idt149",widgetVar:"widget_formSmash_upper_j_idt149",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt150_j_idt152",{id:"formSmash:upper:j_idt150:j_idt152",widgetVar:"widget_formSmash_upper_j_idt150_j_idt152",target:"formSmash:upper:j_idt150:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Tensor Products on Category O and Kostant's ProblemPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Universitetsbiblioteket , 2008. , p. 36
##### Series

Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 59
##### Keywords [en]

Semi-simple Lie algebras, Tensor products, Kostant's problem, Primitive quotients
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-9388ISBN: 978-91-506-2034-4 (print)OAI: oai:DiVA.org:uu-9388DiVA, id: diva2:172846
##### Public defence

2008-12-11, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt443",{id:"formSmash:j_idt443",widgetVar:"widget_formSmash_j_idt443",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true}); Available from: 2008-11-19 Created: 2008-11-19Bibliographically approved
##### List of papers

This thesis consists of a summary and three papers, concerning some aspects of representation theory for complex finite dimensional semi-simple Lie algebras with focus on the BGG-category O.

Paper I is motivated by the many useful properties of functors on category O given by tensoring with finite dimensional modules, such as projective functors and translation functors. We study properties of functors on O given by tensoring with arbitrary (possibly infinite dimensional) modules. Such functors give rise to a faithful action of O on itself via exact functors which preserve tilting modules, via right exact functors which preserve projective modules, and via left exact functors which preserve injective modules.

Papers II and III both deal with Kostant's problem. In Paper II we establish an effective criterion equivalent to the answer to Kostant's problem for simple highest weight modules, in the case where the Lie algebra is of type A. Using this, we derive some old and new results which answer Kostant's problem in special cases. An easy sufficient condition derived from this criterion using Kazhdan-Lusztig combinatorics allows for a straightforward computational check using a computer, by which we get a complete answer for simple highest weight modules in the principal block of O for algebras of rank less than 5.

In Paper III we relate the answer to Kostant's problem for certain modules to the answer to Kostant's problem for a module over a subalgebra. We also give a new description of a certain quotient of the dominant Verma module, which allows us to give a bound on the multiplicities of simple composition factors of primitive quotients of the universal enveloping algebra.

1. Tensoring with infinite-dimensional modules in O_0$(function(){PrimeFaces.cw("OverlayPanel","overlay172843",{id:"formSmash:j_idt505:0:j_idt509",widgetVar:"overlay172843",target:"formSmash:j_idt505:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A new approach to Kostant's problem$(function(){PrimeFaces.cw("OverlayPanel","overlay172844",{id:"formSmash:j_idt505:1:j_idt509",widgetVar:"overlay172844",target:"formSmash:j_idt505:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Kostant's problem and parabolic subgroups$(function(){PrimeFaces.cw("OverlayPanel","overlay172845",{id:"formSmash:j_idt505:2:j_idt509",widgetVar:"overlay172845",target:"formSmash:j_idt505:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1171",{id:"formSmash:j_idt1171",widgetVar:"widget_formSmash_j_idt1171",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1225",{id:"formSmash:lower:j_idt1225",widgetVar:"widget_formSmash_lower_j_idt1225",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1226_j_idt1228",{id:"formSmash:lower:j_idt1226:j_idt1228",widgetVar:"widget_formSmash_lower_j_idt1226_j_idt1228",target:"formSmash:lower:j_idt1226:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});