Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The impact of volcanism on Scandinavian climate and human societies during the Holocene: Insights into the Fimbulwinter eruptions (536/540 AD)
Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Norway.ORCID-id: 0000-0002-9217-2058
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Historisk-filosofiska fakulteten, Institutionen för arkeologi och antik historia. Department of Archaeology and Ancient History, Uppsala University, Sweden.ORCID-id: 0000-0003-4423-7379
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Historisk-filosofiska fakulteten, Institutionen för arkeologi och antik historia.ORCID-id: 0000-0002-4857-202X
The Museum of Cultural History, University of Oslo, Norway.ORCID-id: 0000-0002-0739-3084
Vise andre og tillknytning
2024 (engelsk)Inngår i: The Holocene, ISSN 0959-6836, E-ISSN 1477-0911Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent paleoclimatic research has revealed that volcanic events around 536–540 AD caused severe, short-term global cooling. For this same period, archeological research from various regions evidences significant cultural transformation. However, there is still a lack of understanding of how human societies responded and adapted to extreme climate variability and new circumstances. This study focuses on the effects of the 536/540 AD volcanic event in four Scandinavian regions by exploring the shift in demographic and land use intensity before, during, and after this abrupt climate cooling. To achieve this, we performed climate simulations with and without volcanic eruptions using a dynamically downscaled climate model (iLOVECLIM) at a high resolution (0.25° or ~25 km). We integrated the findings with a comprehensive collection of radiocarbon dates from excavated archeological sites across various Scandinavian regions. Our Earth System Model simulates pronounced cooling (maximum ensemble mean −1.1°C), an abrupt reduction in precipitation, and a particularly acute drop in growing degree days (GDD0) after the volcanic event, which can be used to infer likely impacts on agricultural productivity. When compared to the archeological record, we see considerable regional diversity in the societal response to this sudden environmental event. As a result, this study provides a more comprehensive insight into the demographic chronology of Scandinavia and a deeper understanding of the land-use practices its societies depended on during the 536/540 AD event. Our results suggest that this abrupt climate anomaly amplified a social change already in progress.

sted, utgiver, år, opplag, sider
2024.
HSV kategori
Forskningsprogram
Arkeologi
Identifikatorer
URN: urn:nbn:se:uu:diva-523945DOI: 10.1177/09596836231225718OAI: oai:DiVA.org:uu-523945DiVA, id: diva2:1840860
Forskningsfinansiär
EU, Horizon 2020, 813904Tilgjengelig fra: 2024-02-27 Laget: 2024-02-27 Sist oppdatert: 2024-04-15
Inngår i avhandling
1. Exploring Uncertainty and Significance: Analysing Human Response to Environmental Risk with Computational Archaeology
Åpne denne publikasjonen i ny fane eller vindu >>Exploring Uncertainty and Significance: Analysing Human Response to Environmental Risk with Computational Archaeology
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

As humanity confronts the escalating challenges posed by rapid climate change, it becomes increasingly urgent to understand the complex dynamics of human-environment interactions to mitigate its multifaceted impacts. Archaeology, with its long-term perspective, offers the opportunity to examine past societal responses to environmental risks across diverse locations in Northwestern Europe and temporal scales. 

This dissertation aims to contribute to this critical endeavour by exploring the socio-environmental dynamics and adaptive strategies of past societies, to inform effective responses to climate change challenges in both the present and future. Utilizing computational archaeology, which integrates digital technologies and computational methods to analyse big data, the dissertation employs probabilistic approaches, including Bayesian modelling like summed probability distributions of radiocarbon (14C) data, to confront uncertainties inherent in reconstructing past human-environmental dynamics from interdisciplinary datasets. Additionally, quantitative methods, such as correlation tests and null hypothesis testing of 14C data, are employed to identify significant shifts in these dynamics, translating insights into quantitative terms for enhanced integration with policy-making processes. 

The primary objective of the dissertation is to illustrate how the integration of archaeological and environmental big data can enrich the understanding of human responses to environmental challenges. The papers in this thesis demonstrate how computational methods can be applied to big data to understand spatiotemporal changes in human-environmental variables, uncovering risk management strategies and societal vulnerabilities. The papers highlight cases where human communities experienced mitigated adverse effects from severe environmental shifts due to diverse socioeconomic strategies. Simultaneously, the results emphasize regional variations in the impacts of climate change, crucial for understanding the effectiveness of human responses. Moreover, the thesis exhibits how big data analytics both complement and challenge existing archaeological interpretations, contributing to the development of new theories. Importantly, it underscores the significance of diverse socioeconomic strategies in mitigating risks, especially in the face of abrupt environmental events.

sted, utgiver, år, opplag, sider
Uppsala: Department of Archaeology and Ancient History, 2024. s. 54
Serie
Studies in Global Archaeology, ISSN 1651-1255 ; 27
Emneord
computational archaeology, big data, risk, human-environment dynamics, spatiotemporal analysis, radiocarbon dating, climate change, land use, historical ecology, Scandinavia, Rhine-Meuse, Oder, Europe, Holocene
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-526685 (URN)978-91-506-3048-0 (ISBN)
Disputas
2024-06-05, Geijersalen, Engelska parken, Thunbergsvägen 3P, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-05-14 Laget: 2024-04-15 Sist oppdatert: 2024-05-14

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://journals.sagepub.com/doi/full/10.1177/09596836231225718

Person

Löwenborg, Daniel

Søk i DiVA

Av forfatter/redaktør
Arthur, FrankHatlestad, KailinLindholm, Karl-JohanLoftsgarden, KjetilLöwenborg, DanielSolheim, SteinarRenssen, Hans
Av organisasjonen
I samme tidsskrift
The Holocene

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf