Jump to content
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt236",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1110",{id:"formSmash:j_idt1110",widgetVar:"widget_formSmash_j_idt1110",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Authority records

Dao, Tuan Anh
#### Search in DiVA

##### By author/editor

Dao, Tuan Anh
##### By organisation

Division of Scientific ComputingNumerical Analysis
On the subject

Computational Mathematics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1334_0_downloads',{id:'formSmash:j_idt1334:0:downloads',type:'bar',responsive:true,data:[[48,21]],title:"Downloads of File (FULLTEXT01)",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:60,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1872071'}],ticks:["Aug -24","Sep -24"],orientation:"vertical",barMargin:50,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 71 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1341",{id:"formSmash:j_idt1341",widgetVar:"widget_formSmash_j_idt1341",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1343",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[418,78]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:430,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1872071'}],ticks:["Aug -24","Sep -24"],orientation:"vertical",barMargin:50,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 496 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1450",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt212",{id:"formSmash:upper:j_idt212",widgetVar:"widget_formSmash_upper_j_idt212",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt213_j_idt215",{id:"formSmash:upper:j_idt213:j_idt215",widgetVar:"widget_formSmash_upper_j_idt213_j_idt215",target:"formSmash:upper:j_idt213:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Invariant domain preserving schemes for magnetohydrodynamicsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Description

##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2024. , p. 50
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2414
##### Keywords [en]

MHD, magnetohydrodynamics, finite element method, artificial viscosity, viscous regularization, invariant domain
##### National Category

Computational Mathematics
##### Research subject

Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-532130ISBN: 978-91-513-2165-3 (print)OAI: oai:DiVA.org:uu-532130DiVA, id: diva2:1872071
##### Public defence

2024-09-06, Sonja Lyttkens, 101121, Ångström, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt548",{id:"formSmash:j_idt548",widgetVar:"widget_formSmash_j_idt548",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt554",{id:"formSmash:j_idt554",widgetVar:"widget_formSmash_j_idt554",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt564",{id:"formSmash:j_idt564",widgetVar:"widget_formSmash_j_idt564",multiple:true}); Available from: 2024-08-13 Created: 2024-06-17 Last updated: 2024-08-13
##### List of papers

Magnetohydrodynamics (MHD) studies the behaviors of ionized gases, such as plasmas, in the presence of a magnetic field. MHD is used in many applications, such as geophysics, space physics, and nuclear fusion.

Despite intensive research in recent decades, many physical and numerical aspects of MHD are not well understood. The challenges inherent in solving MHD stem from the obstacles encountered in ordinary hydrodynamics, such as those described by the compressible Euler/Navier-Stokes equations, along with the intricacies arising from electromagnetism. A characteristic of compressible flows is their tendency to develop shocks/discontinuities over time. This often leads to unphysical traits in numerical approximations if the capturing scheme is not constructed properly. By physical laws, the magnetic field is solenoidal. However, in practice, numerical schemes seldom ensure this property precisely, which may lead to instability and convergence to wrong solutions. In numerical simulation of many applications, positive physical quantities such as density and pressure can easily become negative. On the whole, preserving the physical relevance of the numerical solutions poses a significant challenge in MHD.

This thesis presents several numerical schemes based on Galerkin approximations to solve MHD. The schemes rely on viscous regularization, a technique to remove mathematical singularities by adding a vanishing viscosity term to the MHD equations. At the continuous level, we propose several choices of viscous regularization and rigorously show that they are consistent with thermodynamics. Based on these choices, we construct numerical schemes of which robustness is confirmed through many challenging benchmarks. Finally, we propose a nonconventional algorithm that simultaneously preserves many desirable physical properties, including positivity of density and internal energy, conservation of total energy, minimum entropy principle, and zero magnetic divergence.

1. A High-Order Residual-Based Viscosity Finite Element Method for the Ideal MHD Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay1684262",{id:"formSmash:j_idt617:0:j_idt621",widgetVar:"overlay1684262",target:"formSmash:j_idt617:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Monolithic parabolic regularization of the MHD equations and entropy principles$(function(){PrimeFaces.cw("OverlayPanel","overlay1682099",{id:"formSmash:j_idt617:1:j_idt621",widgetVar:"overlay1682099",target:"formSmash:j_idt617:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. A nodal based high order nonlinear stabilization for finite element approximation of Magnetohydrodynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay1872039",{id:"formSmash:j_idt617:2:j_idt621",widgetVar:"overlay1872039",target:"formSmash:j_idt617:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Viscous Regularization of the MHD Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay1754775",{id:"formSmash:j_idt617:3:j_idt621",widgetVar:"overlay1754775",target:"formSmash:j_idt617:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. A structure preserving numerical method for the ideal compressible MHD system$(function(){PrimeFaces.cw("OverlayPanel","overlay1872050",{id:"formSmash:j_idt617:4:j_idt621",widgetVar:"overlay1872050",target:"formSmash:j_idt617:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1370",{id:"formSmash:j_idt1370",widgetVar:"widget_formSmash_j_idt1370",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1432",{id:"formSmash:lower:j_idt1432",widgetVar:"widget_formSmash_lower_j_idt1432",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1433_j_idt1435",{id:"formSmash:lower:j_idt1433:j_idt1435",widgetVar:"widget_formSmash_lower_j_idt1433_j_idt1435",target:"formSmash:lower:j_idt1433:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});