uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detector response modeling
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Avdelningen för sjukhusfysik.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Avdelningen för sjukhusfysik. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för radiologi, onkologi och strålningsvetenskap, Enheten för onkologi.
Vise andre og tillknytning
2009 (engelsk)Patent (Annet (populærvitenskap, debatt, mm))
Abstract [en]

A detector response correction arrangement and method is proposed for online determination of correction factors for arbitrary positions from arbitrary incident fluence distributions. As modern radiotherapy utilizes more of the available degrees of freedom of radiation machines, dosimetry has to be able to present reliable measurements for all these degrees of freedom. To determine correction factors online during measurement, Monte Carlo technique is used to precalculate fluence pencil kernels from a monodirectional beam to fully describe the particle fluence in an irradiated medium. Assuming that the particle fluence is not significantly altered by the introduction of a small detector volume, the fluence pencil kernels (212) can be integrated (214), and correction factors (216) determined, e.g. by Cavity Theory, in different positions for the detector material.

sted, utgiver, år, opplag, sider
2009.
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-120609OAI: oai:DiVA.org:uu-120609DiVA, id: diva2:303658
Patent
US US2009090870 (A1) (2009-04-09)Tilgjengelig fra: 2010-03-15 Laget: 2010-03-15 Sist oppdatert: 2012-05-29bibliografisk kontrollert
Inngår i avhandling
1. Modeling Silicon Diode Dose Response in Radiotherapy Fields using Fluence Pencil Kernels
Åpne denne publikasjonen i ny fane eller vindu >>Modeling Silicon Diode Dose Response in Radiotherapy Fields using Fluence Pencil Kernels
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In radiotherapy, cancer is treated with ionizing radiation, most commonly bremsstrahlung photons from electrons of several MeV. Secondary electrons produced in photon-interactions results in dose deposition. The treatment response is low for low doses, raises sharply for normal treatment doses and saturates at higher doses. This response pattern applies to both eradication of tumors and to complications in healthy tissues. Well controlled treatments require accurate dosimetry since the uncertainty in delivered dose will be magnified 1 to 5 times in treatment response variations. Techniques that superpose many small radiation fields to concentrate the dose to a localized target are becoming increasingly used. A detector with high spatial resolution suitable for such fields is a silicon diode. To maintain the current accuracy of the dosimetric calibration of 1.5%, diode measurements relative to this calibration should preferably be possible at 0.5% accuracy level.

The main limitation of silicon diodes is their over-response to low-energy photons. This problem has been adressed with the insertion of a high atomic number filter in diodes. For modeling diode detector response one must quantify the spectral variations in the irradiated medium resulting from variations of the beam parameters. This requires understanding of the particle transport and can be achieved by Monte Carlo simulations. However, the small dimensions of the detector geometry compared to surrounding medium makes a direct application of Monte Carlo impractical due to the large amount of CPU time necessary to reach statistically satisfactory results.

In this work a fast method for spectra calculations is used, based on superposition of mono-energetic fluence pencil kernels. Building on this base a general model for silicon response functions in photon fields is developed. The incident photons are bipartitioned into a low and a high energy component. The high energy part is treated with the Spencer-Attic cavity theory while the low energy part and scattered photons are treated with large cavity theory. The deviations from electron equilibrium are investigated and handled with correction factors. The result is used to correct unshielded diode measurements, with an overall uncertainty less than 0.5%, except for very small fields where the precision is around 1-2%, thus eliminating the need for less predictable shielded diodes for measurements in photon fields.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2010. s. 48
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 536
HSV kategori
Forskningsprogram
Medicinsk radiofysik
Identifikatorer
urn:nbn:se:uu:diva-120581 (URN)978-91-554-7748-6 (ISBN)
Disputas
2010-04-29, Skoogsalen, ingång 78, Akademiska sjukhuset, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-04-08 Laget: 2010-03-15 Sist oppdatert: 2010-04-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Ahnesjö, Anders

Søk i DiVA

Av forfatter/redaktør
Ahnesjö, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 733 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf