uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Measurements of low-conductance single molecules using gold nanoelectrodes: limitations and considerations
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och Funktionella Material)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. (Elektronmikroskopi och Nanoteknologi)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. (Elektronmikroskopi och Nanoteknologi)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. (Nanoteknologi och Funktionella Material)
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

A high resistance nanogap platform was used to trap and electrically characterize 30 nm thiolated double-stranded DNA molecules. High resolution scanning electron microscopy was also used to image the trapped DNA strands. It was found that the surface state of the electrodes and underlying substrate could influence the measurements of trapped molecules when measured resistances were on the order of TW or greater. Hydrophilic surfaces gave rise to larger leakage currents that could potentially mask underlying signals from molecules positioned in the nanogap. Finally, careful handling of the samples and control of the environment is essential to avoid surface charging of the oxide substrate layer as these parasitic charges affect electrical measurements of the nanogap. The presented results should be useful for characterization of molecules in molecular electronics or sensors employing nanogap platforms.

Emneord [en]
Nanogap, nanoelectrode, DNA, molecular electronics, surface charge
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-122949OAI: oai:DiVA.org:uu-122949DiVA, id: diva2:311480
Tilgjengelig fra: 2010-04-21 Laget: 2010-04-21 Sist oppdatert: 2012-12-07
Inngår i avhandling
1. Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and Particles
Åpne denne publikasjonen i ny fane eller vindu >>Fabrication and Applications of a Focused Ion Beam Based Nanocontact Platform for Electrical Characterization of Molecules and Particles
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The development of new materials with novel properties plays an important role in improving our lives and welfare. Research in Nanotechnology can provide e.g. cheaper and smarter materials in applications such as energy storage and sensors. In order for this development to proceed, we need to be able to characterize the material properties at the nano-, and even the atomic scale. The ultimate goal is to be able to tailor them according to our needs.

One of the great challenges concerning the characterization of nano-sized objects is how to achieve the physical contact to them. This thesis is focused on the contacting of nanoobjects with the aim of electrically characterizing them and subsequently understanding their electrical properties. The analyzed nanoobjects are carbon nanosheets, nanotetrapods, nanoparticles and molecular systems.

Two contacting strategies were employed in this thesis. The first strategy involved the development of a focused ion beam (FIB) based nanocontact platform. The platform consists of gold nanoelectrodes, having nanogaps of 10-30 nm, on top of an insulating substrate. Gold nanoparticles, double-stranded DNA and cadmium telluride nanotetrapods have been trapped in the gaps by using dielectrophoresis. In certain studies, the gold electrodes have also been coated with conducting or non-conducting molecules, prior to the trapping of gold nanoparticles, in order to form molecular junctions. These junctions were subsequently electrically characterized to evaluate the conduction properties of these molecular systems. For the purpose of better controlling the attachment of molecules to the nanoelectrodes, a novel route to synthesize alkanedithiol coated gold nanoparticles was developed. The second contacting strategy was based on the versatility of the FIB instrument as a platform for in-situ manipulation and electrical characterization of non-functionalized and functionalized carbon nanosheets, where it was found that the functionalized samples had an increased conductivity by more than one order of magnitude.

Both contacting strategies proved to be valuable for building knowledge around contacting and electrical characterization of nanoobjects

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2010. s. 88
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 745
Emneord
Focused Ion Beam, FIB, Scanning Electron Microscopy, SEM, Nanogap electrodes, Nanostructuring, Nanofabrication, Electron Beam Lithography, Electrical characterization, Dielectrophoresis
Identifikatorer
urn:nbn:se:uu:diva-122940 (URN)978-91-554-7809-4 (ISBN)
Disputas
2010-06-07, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, 75121, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-05-17 Laget: 2010-04-21 Sist oppdatert: 2010-05-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Blom, Tobias

Søk i DiVA

Av forfatter/redaktør
Blom, Tobias
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 828 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf