uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Vitali covering theorem in constructive mathematics
FB 6: Mathematik, Universität Siegen, Siegen, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Algebra, geometri och logik.
(Engelska)Artikel i tidskrift (Refereegranskat) Submitted
Abstract [en]

This paper investigates the Vitali Covering Theorem from various constructive angles. A Vitali Cover of a metric space is a cover such that for every point there exists an arbitrarily small set of the cover containing this point. The VCT now states, that for any Vitali Cover one can find a finite, disjoint family of sets in the Vitali Cover that cover the entire space up to a set of a given non-zero measure. We will show, by means of a recursive counterexample, that there cannot be a fully constructive proof, but that adding a very weak semi-constructive principle suffices to give such a proof. Lastly, we will show that with an appropriate formalization in formal topology the non-constructive problems can be avoided completely.

Nyckelord [en]
Constructive mathematics, Reverse mathematics, Measure theory, Vitali's covering theorem, Formal topology
Forskningsämne
Matematisk logik
Identifikatorer
URN: urn:nbn:se:uu:diva-152066OAI: oai:DiVA.org:uu-152066DiVA, id: diva2:412413
Tillgänglig från: 2011-04-22 Skapad: 2011-04-22 Senast uppdaterad: 2011-06-14Bibliografiskt granskad
Ingår i avhandling
1. Contributions to Pointfree Topology and Apartness Spaces
Öppna denna publikation i ny flik eller fönster >>Contributions to Pointfree Topology and Apartness Spaces
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The work in this thesis contains some contributions to constructive point-free topology and the theory of apartness spaces. The first two papers deal with constructive domain theory using formal topology. In Paper I we focus on the notion of a domain representation of a formal space as a way to introduce generalized points of the represented space, whereas we in Paper II give a constructive and point-free treatment of the domain theoretic approach to differential calculus. The last two papers are of a slightly different nature but still concern constructive topology. In paper III we consider a measure theoretic covering theorem from various constructive angles in both point-set and point-free topology. We prove a point-free version of the theorem. In Paper IV we deal with issues of impredicativity in the theory of apartness spaces. We introduce a notion of set-presented apartness relation which enables a predicative treatment of basic constructions of point-set apartness spaces.

Ort, förlag, år, upplaga, sidor
Uppsala: Department of Mathematics, 2011. s. 40
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 71
Nyckelord
Constructive mathematics, General topology, Pointfree topology, Domain theory, Interval analysis, Apartness spaces
Nationell ämneskategori
Algebra och logik
Forskningsämne
Matematisk logik
Identifikatorer
urn:nbn:se:uu:diva-152068 (URN)978-91-506-2219-5 (ISBN)
Disputation
2011-06-08, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-05-17 Skapad: 2011-04-23 Senast uppdaterad: 2011-06-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Algebra, geometri och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 619 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf