uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SOx on ceria from adsorbed SO2
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Strukturkemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Strukturkemi.
Vise andre og tillknytning
2011 (engelsk)Inngår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 134, nr 18, s. 184703-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Results from first-principles calculations present a rather clear picture of the interaction of SO2 with unreduced and partially reduced (111) and (110) surfaces of ceria. The Ce3+/Ce4+ redox couple, together with many oxidation states of S, give rise to a multitude of SOx species, with oxidation states from + III to + VI. SO2 adsorbs either as a molecule or attaches via its S-atom to one or two surface oxygens to form sulfite (SO32-) and sulfate (SO42-) species, forming new S-O bonds but never any S-Ce bonds. Molecular adsorption is found on the (111) surface. SO32- structures are found on both the (111) and (110) surfaces of both stoichiometric and partially reduced ceria. SO42-structures are observed on the (110) surface together with the formation of two reduced Ce3+ surface cations. SO2 can also partially heal the ceria oxygen vacancies by weakening a S-O bond, when significant electron transfer from the surface (Ce4f) into the lowest unoccupied molecular orbital of the SO2 adsorbate takes place and oxidizes the surface Ce3+ cations. Furthermore, we propose a mechanism that could lead to monodentate sulfate formation at the (111) surface.

sted, utgiver, år, opplag, sider
2011. Vol. 134, nr 18, s. 184703-
HSV kategori
Forskningsprogram
Kemi med inriktning mot oorganisk kemi
Identifikatorer
URN: urn:nbn:se:uu:diva-154547DOI: 10.1063/1.3566998ISI: 000290589900035OAI: oai:DiVA.org:uu-154547DiVA, id: diva2:420965
Tilgjengelig fra: 2011-06-07 Laget: 2011-06-07 Sist oppdatert: 2019-02-19bibliografisk kontrollert
Inngår i avhandling
1. Oxygen Vacancy Chemistry in Ceria
Åpne denne publikasjonen i ny fane eller vindu >>Oxygen Vacancy Chemistry in Ceria
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Cerium(IV) oxide (CeO2), ceria, is an active metal oxide used in solid oxide fuel cells and for the purification of exhaust gases in vehicle emissions control. Behind these technically important applications of ceria lies one overriding feature, namely ceria's exceptional reduction-oxidation properties. These are enabled by the duality of the cerium ion which easily toggles between Ce4+ and Ce3+. Here the cerium 4f electrons and oxygen vacancies (missing oxygen ions in the structure) are key players. In this thesis, the nature of ceria's f electrons and oxygen vacancies are in focus, and examined with theoretical calculations.

It is shown that for single oxygen vacancies at ceria surfaces, the intimate coupling between geometrical structure and electron localisation gives a multitude of almost degenerate local energy mimima. With many vacancies, the situation becomes even more complex, and not even state-of-the-art quantum-mechanical calculations manage to predict the experimentally observed phenomenon of vacancy clustering. Instead, an alternative set of computer experiments managed to produce stable vacancy chains and trimers consistent with experimental findings from the literature and revealed a new general principle for surface vacancy clustering.

The rich surface chemistry of ceria involves not only oxygen vacancies but also other active oxygen species such as superoxide ions (O2). Experiments have shown that nanocrystalline ceria demonstrates an unusually large oxygen storage capacity (OSC) and an appreciable low-temperature redox activity, which have been ascribed to superoxide species. A mechanism explaining these phenomena is presented.

The ceria surface is also known to interact with SOx molecules, which is relevant both in the context of sulfur poisoning of ceria-based catalysts and sulfur recovery from them. In this thesis, the sulfur species and key mechanisms involved are identified.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2012. s. 59
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 896
Emneord
Ceria, Density Functional Theory, Oxygen storage, Nano crystals, Sulfur poisoning
HSV kategori
Forskningsprogram
Kemi med inriktning mot oorganisk kemi
Identifikatorer
urn:nbn:se:uu:diva-167521 (URN)978-91-554-8271-8 (ISBN)
Disputas
2012-03-16, Å2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2012-02-24 Laget: 2012-01-30 Sist oppdatert: 2019-02-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Hermansson, KerstiKullgren, Jolla

Søk i DiVA

Av forfatter/redaktør
Hermansson, KerstiKullgren, Jolla
Av organisasjonen
I samme tidsskrift
Journal of Chemical Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 932 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf