uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ab initio study of lithium-doped graphane for hydrogen storage
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Visa övriga samt affilieringar
2011 (Engelska)Ingår i: Europhysics letters, ISSN 0295-5075, E-ISSN 1286-4854, Vol. 96, nr 2, s. 27013-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Based on the first-principle density functional calculations we predict that Li-doped graphane (prehydrogenated graphene) can be a potential candidate for hydrogen storage. The calculated Li-binding energy on graphane is significantly higher than the Li bulk's cohesive energy ruling out any possibility of cluster formations in the Li-doped graphane. Our study shows that even with very low concentration (5.56%) of Li doping, the Li-graphane sheet can achieve a reasonable hydrogen storage capacity of 3.23 wt.%. The van der Waals corrected H(2) binding energies fall within the range of 0.12-0.29 eV, suitable for practical H(2) storage applications. 

Ort, förlag, år, upplaga, sidor
2011. Vol. 96, nr 2, s. 27013-
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:uu:diva-161557DOI: 10.1209/0295-5075/96/27013ISI: 000295974600036OAI: oai:DiVA.org:uu-161557DiVA, id: diva2:457851
Tillgänglig från: 2011-11-20 Skapad: 2011-11-15 Senast uppdaterad: 2017-12-08Bibliografiskt granskad
Ingår i avhandling
1. Computational Insights on Functional Materials for Clean Energy Storage: Modeling, Structure and Thermodynamics
Öppna denna publikation i ny flik eller fönster >>Computational Insights on Functional Materials for Clean Energy Storage: Modeling, Structure and Thermodynamics
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The exponential increase in the demands of world’s energy and the devastating effects of current fossil fuels based sources has forced us to reduce our dependence on the current sources as well as finding cleaner, cheaper and renewable alternates. Being abundant, efficient and renewable, hydrogen can be opted as the best possible replacement of the diminishing and harmful fossil fuels. But the transformation towards the hydrogen-based economy is hindered by the unavailability of suitable storage medium for hydrogen. First principles calculations based on density functional theory has been employed in this thesis to investigate the structures modelling and thermodynamics of various efficient materials capable of storing hydrogen under chemisorption and physisorption mechanisms.

Thanks to their high storage capacity, abundance and low cost, metal hydride (MgH2) has been considered as promising choice for hydrogen storage. However, the biggest drawback is their strong binding with the absorbed hydrogen under chemisorption, which make them inappropriate for operation at ambient conditions. Different strategies have been applied to improve the thermodynamics including doping with light and transitions metals in different phases of MgH2 in bulk form.  Application of mechanical strain along with Al, Si and Ti doping on MgH2 (001) and (100) surfaces has also been found very useful in lowering the dehydrogenation energies that ultimately improve adsorption/desorption temperatures.

Secondly, in this thesis, two-dimensional materials with high surface area have been studied for the adsorption of hydrogen in molecular form (H2) under physisorption. The main disadvantage of this kind of storage is that the adsorption of H2 with these nanostructures likes graphane, silicene, silicane, BN-sheets, BC3 sheets are low and demand operation at cryogenic conditions. To enhance the H2 binding and attain high storage capacity the above-mentioned nanostructures have been functionalized with light metals (alkali, alkaline) and polylithiated species  (OLi2, CLi3, CLi4). The stabilities of the designed functional materials for H2 storage have been verified by means of molecular dynamics simulations.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 66
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1073
Nyckelord
Density functional theory, Molecular dynamics, Hydrogen storage, Chemisorption, Physisorption, Functionalization
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Fysik med inriktning mot atom- molekyl- och kondenserande materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-206938 (URN)978-91-554-8751-5 (ISBN)
Disputation
2013-10-28, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2013-10-04 Skapad: 2013-09-07 Senast uppdaterad: 2014-01-23

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Hussain, TanveerPathak, BiswarupMaark, Tuhina AditAraujo, Carlos MoysesScheicher, Ralph H.Ahuja, Rajeev

Sök vidare i DiVA

Av författaren/redaktören
Hussain, TanveerPathak, BiswarupMaark, Tuhina AditAraujo, Carlos MoysesScheicher, Ralph H.Ahuja, Rajeev
Av organisationen
Materialteori
I samma tidskrift
Europhysics letters
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 446 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf