uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimal doubling, Reifenberg flatness and operators of p-Laplace type
2011 (engelsk)Inngår i: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, nr 17, s. 5943-5955Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we consider operators of p-Laplace type of the form ∇·A(x,∇u) = 0. ConcerningA we assume, for p ∈ (1,∞) fixed, an appropriate ellipticity type condition, H¨older continuityin x and that A(x, ) = ||p−1A(x, /||) whenever x ∈ Rn and ∈ Rn \ {0}. Let  ⊂ Rn be abounded domain, let D be a compact subset of . We say that ˆu = ˆup,D, is the A-capacitaryfunction for D in  if ˆu ≡ 1 on D, ˆu ≡ 0 on @ in the sense of W1,p0 () and ∇·A(x,∇ˆu) = 0 in \D in the weak sense. We extend ˆu to Rn \  by putting ˆu ≡ 0 on Rn \ . Then there existsa unique finite positive Borel measure ˆμ on Rn, with support in @, such thatZ hA(x,∇ˆu),∇i dx = −Z dˆμ whenever ∈ C∞0 (Rn \ D).In this paper we prove that if  is Reifenberg flat with vanishing constant, thenlimr→0infw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= limr→0supw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= n−1,for every , 0 < ≤ 1. In particular, we prove that ˆμ is an asymptotically optimal doublingmeasure on @.

sted, utgiver, år, opplag, sider
2011. Vol. 74, nr 17, s. 5943-5955
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-163435DOI: 10.1016/j.na.2011.05.061OAI: oai:DiVA.org:uu-163435DiVA, id: diva2:463936
Tilgjengelig fra: 2012-11-30 Laget: 2011-12-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert
Inngår i avhandling
1. Boundary Behavior of p-Laplace Type Equations
Åpne denne publikasjonen i ny fane eller vindu >>Boundary Behavior of p-Laplace Type Equations
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations.

Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary.  Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough. 

Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough.

In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling.

Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case.

In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ.

Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1035
Emneord
p-Laplace, Boundary Harnack inequality, A-harmonic, Ahlfors regularity, NTA-domains, Martin boundary, Reifenberg flat, Approximable by Lipschitz graphs, Subelliptic, Carleson estimate
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
urn:nbn:se:uu:diva-198008 (URN)978-91-554-8645-7 (ISBN)
Disputas
2013-05-24, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-05-03 Laget: 2013-04-08 Sist oppdatert: 2013-08-30

Open Access i DiVA

Optdoub(247 kB)162 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 247 kBChecksum SHA-512
90f77403dd98bbeb05f381a19c6b0d6deffb33f8c6cd16c550b2c653f15e200df9e7af744c3d5104dd5ee3e25e795b29c2b799256209d1784fcb65cd05d55964
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Avelin, BennyNyström, Kaj

Søk i DiVA

Av forfatter/redaktør
Avelin, BennyNyström, Kaj
I samme tidsskrift
Nonlinear Analysis

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 162 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 589 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf