uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ion conduction of branched polyethyleneimine-lithium bis(trifluoromethylsulfonyl) imide electrolytes
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
Visa övriga samt affilieringar
2011 (Engelska)Ingår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 57, s. 201-206Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Ionic conductivity of polymer electrolytes containing branched poly (ethylene imine) (BPEI) and lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) was measured between temperatures of 20 and 70◦C and molar ratios of 20:1 and 400:1. The electrolytes were characterized by impedance spectroscopy, differential scanning calorimetry, and viscosity measurements. At room temperature, the maximum conductivity was 2×10−6 S/cm at a molar ratio of 50:1. The molar conductivity of the electrolytes displayed first a minimum and then a maximum upon increasing salt concentration. A proportionality of molar conductivity to segmental mobility was seen from glass transition temperature and viscosity measurements. Analysis of the Walden product and isoviscosity conductivity showed that the percentage of ions bound in ion pairs increased at low concentrations below 0.1 mol/kg. The average dipole moment decreased with salt concentration. The temperature dependence of the ionic conductivity showed an Arrhenius behavior.

Ort, förlag, år, upplaga, sidor
2011. Vol. 57, s. 201-206
Nyckelord [en]
Ionic conductivity, Poly (ethylene imine), Arrhenius behavior, Walden rule, Ion pairing
Nationell ämneskategori
Annan materialteknik
Forskningsämne
Kemi med inriktning mot polymerkemi; Teknisk fysik med inriktning mot fasta tillståndets fysik
Identifikatorer
URN: urn:nbn:se:uu:diva-163443DOI: 10.1016/j.electacta.2011.04.040ISI: 000298463900029OAI: oai:DiVA.org:uu-163443DiVA, id: diva2:463955
Tillgänglig från: 2011-12-12 Skapad: 2011-12-12 Senast uppdaterad: 2017-12-08Bibliografiskt granskad
Ingår i avhandling
1. Characterization and modeling of Poly(ethylene imine)-LiTFSI Polymer Electrolytes
Öppna denna publikation i ny flik eller fönster >>Characterization and modeling of Poly(ethylene imine)-LiTFSI Polymer Electrolytes
2010 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Uppsala: Uppsala universitet, 2010. s. 65
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:uu:diva-163447 (URN)
Handledare
Tillgänglig från: 2011-12-12 Skapad: 2011-12-12 Senast uppdaterad: 2011-12-12Bibliografiskt granskad
2. Functionalization of polymer electrolytes for electrochromic windows
Öppna denna publikation i ny flik eller fönster >>Functionalization of polymer electrolytes for electrochromic windows
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Saving energy in buildings is of great importance because about 30 to 40 % of the energy in the world is used in buildings. An electrochromic window (ECW), which makes it possible to regulate the inflow of visible light and solar energy into buildings, is a promising technology providing a reduction in energy consumption in buildings along with indoor comfort. A polymer electrolyte is positioned at the center of multi-layer structure of an ECW and plays a significant role in the working of the ECW.

In this study, polyethyleneimine: lithium (bis(trifluoromethane)sulfonimide (PEI:LiTFSI)-based polymer electrolytes were characterized by using dielectric/impedance spectroscopy, differential scanning calorimetry, viscosity recording, optical spectroscopy, and electrochromic measurements.

In the first part of the study, PEI:LiTFSI electrolytes were characterized at various salt concentrations and temperatures. Temperature dependence of viscosity and ionic conductivity of the electrolytes followed Arrhenius behavior. The viscosity was modeled by the Bingham plastic equation. Molar conductivity, glass transition temperature, viscosity, Walden product, and iso-viscosity conductivity analysis showed effects of segmental flexibility, ion pairs, and mobility on the conductivity. A connection between ionic conductivity and ion-pair relaxation was seen by means of (i) the Barton-Nakajima-Namikawa relation, (ii) activation energies of the bulk relaxation, and ionic conduction and (iii) comparing two equivalent circuit models, containing different types of Havriliak-Negami elements, for the bulk response.

In the second part, nanocomposite PEI:LiTFSI electrolytes with SiO2, In2O3, and In2O3:Sn (ITO) were examined. Adding SiO2 to the PEI:LiTFSI enhanced the ionic conductivity by an order of magnitude without any degradation of the optical properties. The effect of segmental flexibility and free ion concentration on the conduction in the presence of SiO2 is discussed. The PEI:LiTFSI:ITO electrolytes had high haze-free luminous transmittance and strong near-infrared absorption without diminished ionic conductivity. Ionic conductivity and optical clarity did not deteriorate for the PEI:LiTFSI:In2O3 and the PEI:LiTFSI:SiO2:ITO electrolytes.

Finally, propylene carbonate (PC) and ethylene carbonate (EC) were added to PEI:LiTFSI in order to perform electrochromic measurements. ITO and SiO2 were added to the PEI:LiTFSI:PC:EC and to a proprietary electrolyte. The nanocomposite electrolytes were tested for ECWs with the configuration of the ECWs being plastic/ITO/WO3/polymer electrolyte/NiO (or IrO2)/ITO/plastic. It was seen that adding nanoparticles to polymer electrolytes can improve the coloring/bleaching dynamics of the ECWs.

From this study, we show that nanocomposite polymer electrolytes can add new functionalities as well as enhancement in ECW applications.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 172
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1057
Nyckelord
Electrochromism, Polymer electrolytes, PEI, LiTFSI, Nanoparticles, Ionic conductivity, Ion-pair relaxation, Near-infrared absorption
Nationell ämneskategori
Nanoteknik Kompositmaterial och -teknik Textil-, gummi- och polymermaterial
Forskningsämne
Teknisk fysik med inriktning mot fasta tillståndets fysik
Identifikatorer
urn:nbn:se:uu:diva-204437 (URN)978-91-554-8714-0 (ISBN)
Disputation
2013-09-20, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2013-08-30 Skapad: 2013-08-05 Senast uppdaterad: 2014-01-07

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Bayrak Pehlivan, IlknurGeorén, PeterGranqvist, Claes-GöranNiklasson, Gunnar A

Sök vidare i DiVA

Av författaren/redaktören
Bayrak Pehlivan, IlknurGeorén, PeterGranqvist, Claes-GöranNiklasson, Gunnar A
Av organisationen
Fasta tillståndets fysik
I samma tidskrift
Electrochimica Acta
Annan materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1002 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf