uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting protein ligand binding motions with the Conformation Explorer
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi. (Flores)
Yale University.
2011 (engelsk)Inngår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 12, s. 417-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background

Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods.

Results

We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins.

Conclusions

We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

sted, utgiver, år, opplag, sider
2011. Vol. 12, s. 417-
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-166880DOI: 10.1186/1471-2105-12-417ISI: 000298260600001PubMedID: 22032721OAI: oai:DiVA.org:uu-166880DiVA, id: diva2:478312
Tilgjengelig fra: 2012-01-16 Laget: 2012-01-16 Sist oppdatert: 2017-12-08bibliografisk kontrollert

Open Access i DiVA

fulltext(2322 kB)112 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2322 kBChecksum SHA-512
24beb0099c8474d377a77734405734ee1fb47de67cf2b9c66c13ffa9a000b089986d8d0d4b11d9e2733bde8c70efbc76f656b3ffb0d1d51f0d42570f0b016733
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Flores, Samuel

Søk i DiVA

Av forfatter/redaktør
Flores, Samuel
Av organisasjonen
I samme tidsskrift
BMC Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 112 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 468 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf