uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated data extraction: A feasible way to construct patient registers of primary care utilization
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Allmänmedicin och preventivmedicin.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Allmänmedicin och preventivmedicin.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Allmänmedicin och preventivmedicin.
2012 (engelsk)Inngår i: Upsala Journal of Medical Sciences, ISSN 0300-9734, E-ISSN 2000-1967, Vol. 117, nr 1, s. 52-56Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Introduction. Electronic medical records (EMRs) enable analysis of health care data by using data mining techniques to build research databases. Though the reliability of the data extraction process is crucial for the credibility of the final analysis, there are few published validations of this process. In this paper we validate the performance of an automated data mining tool on EMR in a primary care setting.

Methods. The Pygargus Customized eXtraction Program (CXP) was programmed to find and then extract data from patients meeting criteria for type 2 diabetes mellitus (T2DM) at one primary health care clinic (PHC). The ability of CXP to extract relevant cases was assessed by comparing cases extracted by an EMR integrated search engine. The concordance of extracted data with the original EMR source was manually controlled.

Results. Prevalence of T2DM was 4.0%, which correspond well to previous estimations. By searching for drug prescriptions, diagnosis codes, and laboratory values, 38%, 53%, and 91% of relevant cases were found, respectively. The sensitivity of CXP regarding extraction of relevant cases was 100%. The specificity was 99.9% due to 12 non-T2DM cases extracted. The congruity at single-item level was 99.6%. The 13 incorrect data items were all located in the same structural module.

Conclusion. The CXP is a reliable and accurate data mining tool to extract selective data from EMR.

sted, utgiver, år, opplag, sider
2012. Vol. 117, nr 1, s. 52-56
Emneord [en]
Data extraction, data mining, electronic medical records (EMRs), knowledge discovery in databases (KDD), primary health care
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-170621DOI: 10.3109/03009734.2011.653015ISI: 000300304000009PubMedID: 22335391OAI: oai:DiVA.org:uu-170621DiVA, id: diva2:509365
Tilgjengelig fra: 2012-03-12 Laget: 2012-03-12 Sist oppdatert: 2017-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Martinell, MatsStålhammar, JanHallqvist, Johan

Søk i DiVA

Av forfatter/redaktør
Martinell, MatsStålhammar, JanHallqvist, Johan
Av organisasjonen
I samme tidsskrift
Upsala Journal of Medical Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 461 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf