uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2013 (Engelska)Ingår i: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 53, s. 641-663Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2013. Vol. 53, s. 641-663
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:uu:diva-172998DOI: 10.1007/s10543-013-0426-4ISI: 000323729800005OAI: oai:DiVA.org:uu-172998DiVA, id: diva2:516176
Tillgänglig från: 2013-03-19 Skapad: 2012-04-17 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
Ingår i avhandling
1. Perfectly Matched Layers and High Order Difference Methods for Wave Equations
Öppna denna publikation i ny flik eller fönster >>Perfectly Matched Layers and High Order Difference Methods for Wave Equations
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The perfectly matched layer (PML) is a novel technique to simulate the absorption of waves in unbounded domains. The underlying equations are often a system of second order hyperbolic partial differential equations. In the numerical treatment, second order systems are often rewritten and solved as first order systems. There are several benefits with solving the equations in second order formulation, though. However, while the theory and numerical methods for first order hyperbolic systems are well developed, numerical techniques to solve second order hyperbolic systems are less complete.

We construct a strongly well-posed PML for second order systems in two space dimensions, focusing on the equations of linear elasto-dynamics. In the continuous setting, the stability of both first order and second order formulations are linearly equivalent. We have found that if the so-called geometric stability condition is violated, approximating the first order PML with standard central differences leads to a high frequency instability at most resolutions. In the second order setting growth occurs only if growing modes are well resolved. We determine the number of grid points that can be used in the PML to ensure a discretely stable PML, for several anisotropic elastic materials.

We study the stability of the PML for problems where physical boundaries are important. First, we consider the PML in a waveguide governed by the scalar wave equation. To ensure the accuracy and the stability of the discrete PML, we derived a set of equivalent boundary conditions. Second, we consider the PML for second order symmetric hyperbolic systems on a half-plane. For a class of stable boundary conditions, we derive transformed boundary conditions and prove the stability of the corresponding half-plane problem. Third, we extend the stability analysis to rectangular elastic waveguides, and demonstrate the stability of the discrete PML.

Building on high order summation-by-parts operators, we derive high order accurate and strictly stable finite difference approximations for second order time-dependent hyperbolic systems on bounded domains. Natural and mixed boundary conditions are imposed weakly using the simultaneous approximation term method. Dirichlet boundary conditions are imposed strongly by injection. By constructing continuous strict energy estimates and analogous discrete strict energy estimates, we prove strict stability.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2012. s. 47
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 931
Nyckelord
Elastic waves, Surface waves, Perfectly matched layers, High order difference methods, Stability, Summation-by-parts operators, Boundary treatments
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-173009 (URN)978-91-554-8365-4 (ISBN)
Disputation
2012-06-08, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, VR 2009-5852
Tillgänglig från: 2012-05-14 Skapad: 2012-04-17 Senast uppdaterad: 2012-10-05Bibliografiskt granskad
2. Perfectly matched layers for second order wave equations
Öppna denna publikation i ny flik eller fönster >>Perfectly matched layers for second order wave equations
2010 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Numerical simulation of propagating waves in unbounded spatial domains is a challenge common to many branches of engineering and applied mathematics. Perfectly matched layers (PML) are a novel technique for simulating the absorption of waves in open domains. The equations modeling the dynamics of phenomena of interest are usually posed as differential equations (or integral equations) which must be solved at every time instant. In many application areas like general relativity, seismology and acoustics, the underlying equations are systems of second order hyperbolic partial differential equations. In numerical treatment of such problems, the equations are often rewritten as first order systems and are solved in this form. For this reason, many existing PML models have been developed for first order systems. In several studies, it has been reported that there are drawbacks with rewriting second order systems into first order systems before numerical solutions are obtained. While the theory and numerical methods for first order systems are well developed, numerical techniques to solve second order hyperbolic systems is an on-going research.

In the first part of this thesis, we construct PML equations for systems of second order hyperbolic partial differential equations in two space dimensions, focusing on the equations of linear elasto-dynamics. One advantage of this approach is that we can choose auxiliary variables such that the PML is strongly hyperbolic, thus strongly well-posed. The second is that it requires less auxiliary variables as compared to existing first order formulations. However, in continuum the stability of both first order and second order formulations are linearly equivalent. A turning point is in numerical approximations. We have found that if the so-called geometric stability condition is violated, approximating the first order PML with standard central differences leads to a high frequency instability for any given resolution. The second order discretization behaves much more stably. In the second order setting instability occurs only if unstable modes are well resolved.

The second part of this thesis discusses the construction of PML equations for the time-dependent Schrödinger equation. From mathematical perspective, the Schrödinger equation is unique, in the sense that it is only first order in time but second order in space. However, with slight modifications, we carry over our ideas from the hyperbolic systems to the Schrödinger equations and derive a set of asymptotically stable PML equations. The new model can be viewed as a modified complex absorbing potential (CAP). The PML model can easily be adapted to existing codes developed for CAP by accurately discretizing the auxiliary variables and appending them accordingly. Numerical experiments are presented illustrating the accuracy and absorption properties of the new PML model.

We are hopeful that the results obtained in this thesis will find useful applications in time-dependent wave scattering calculations.

Ort, förlag, år, upplaga, sidor
Uppsala University, 2010
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2010-004
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-124538 (URN)
Handledare
Tillgänglig från: 2010-05-07 Skapad: 2010-05-04 Senast uppdaterad: 2017-08-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Kreiss, GunillaDuru, Kenneth

Sök vidare i DiVA

Av författaren/redaktören
Kreiss, GunillaDuru, Kenneth
Av organisationen
Avdelningen för beräkningsvetenskapNumerisk analys
I samma tidskrift
BIT Numerical Mathematics
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 795 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf