Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Standstill Frequency Response Test on a Synchronous Machine Extended With Damper Bar Measurements
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. (Hydropower)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. (Hydropower)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. (Hydropower)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. (Hydropower)
2016 (English)In: IEEE transactions on energy conversion, ISSN 0885-8969, E-ISSN 1558-0059, Vol. 31, no 1, p. 46-56Article in journal (Refereed) Published
Abstract [en]

Standstill Frequency Response (SSFR) test data from a salient-pole synchronous machine with reconfigurable damper winding is presented. In addition to the regular measurements, the damper bar currents are measured and used to obtain the stator-to-damper transfer functions. The test is performed three times with physically different damper winding configurations. An extension to the standard SSFR test analysis scheme is suggested where the stator-to-damper transfer functions are included. The validity of the identified models is substantiated by comparison of the simulated and measured machine response to a drive torque step disturbance. It is found that the damper winding measurements can be incorporated in the analysis scheme to isolate the effect of the damper circuits. However, for a machine of the type studied, also the standard SSFR test produce yields models that are accurate enough for power system studies.

Place, publisher, year, edition, pages
2016. Vol. 31, no 1, p. 46-56
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
URN: urn:nbn:se:uu:diva-182155DOI: 10.1109/TEC.2015.2450994ISI: 000372024100005OAI: oai:DiVA.org:uu-182155DiVA, id: diva2:558592
Available from: 2012-10-04 Created: 2012-10-04 Last updated: 2022-01-28Bibliographically approved
In thesis
1. Hydropower generator and power system interaction
Open this publication in new window or tab >>Hydropower generator and power system interaction
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. p. 119
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 978
Keywords
Amortisseur windings, applied voltage test, automatic voltage regulators, damper windings, damping torque, empirical modelling, equivalent circuits, excitation control, finite element method, hydropower generators, power system restoration, power system stability, synchronous machines, self excitation, shaft torque amplification, short circuit test, single machine infinite bus, slip test, standstill frequency response test, subsynchronous oscillations, synchronising torque, synchronous generators, torsional interaction.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-182188 (URN)978-91-554-8486-6 (ISBN)
Public defence
2012-11-16, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2012-10-26 Created: 2012-10-04 Last updated: 2013-01-23
2. Measurement and modelling of unbalanced magnetic pull in hydropower generators
Open this publication in new window or tab >>Measurement and modelling of unbalanced magnetic pull in hydropower generators
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hydropower research is often perceived to be an old and exhausted field of study but with ageing equipment and the need for more intermittent operation caused by an increased share of other renewable energy sources new challenges lie ahead.

The main focus of this dissertation are the electromagnetic forces resulting from nonuniform air gap flux, whether it be caused by rotor eccentricity or a faulty field winding. Results are predominantly obtained from measurements on an experimental generator and numerical simulations.

With the computational capacity available today it is possible to numerically analyse physical phenomena that previously could only be studied with analytical tools. Numerical models can also be expanded to encompass more than one aspect of generator operation in coupled field-circuit models without model complexity surpassing computer capability.

Three studies of unbalanced magnetic pull, UMP, in synchronous salient pole generators constitute the main part of this thesis.

The first is a study of how parallel stator circuits affect the unbalanced magnetic pull caused by rotor eccentricity. Depending on the relationship between the geometry of the separate circuits and the direction of the eccentricity it was found that parallel circuits could reduce the UMP substantially.

Secondly, an investigation of the effect of damper winding configuration on UMP was performed. The results showed that damper winding resistivity and the distance between the damper bars in a pole determine the effectiveness of the damper winding in reducing the UMP. Simulations of a production machine indicate that the reduction can be substantial from damper windings with low resistivity.

The third study analyses the consequences of field winding interturn short circuits. Apart from a resulting rotating unbalanced magnetic pull it is found that the unaffected poles with the same polarity as the affected pole experience an increase in flux density.

In a fourth article a new stand still frequency response, SSFR, test method including measurements of damper winding voltage and current is presented. It is found that the identified models are capable of predicting the stator to damper transfer function both with and without the damper winding measurements included.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. p. 51
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1029
Keywords
Damper winding, eddy currents, field winding short circuit, finite element method, hydropower generator, parallel circuits, rotor eccentricity, salient poles, synchronous generators, synchronous machines, UMP, unbalanced magnetic pull.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-196490 (URN)978-91-554-8619-8 (ISBN)
Public defence
2013-04-26, Polhemssalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2013-04-05 Created: 2013-03-10 Last updated: 2013-08-30Bibliographically approved
3. The Frequency of the Frequency: On Hydropower and Grid Frequency Control
Open this publication in new window or tab >>The Frequency of the Frequency: On Hydropower and Grid Frequency Control
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Variations in the electricity consumption and production connected to the power system have to be balanced by active control. Hydropower is the most important balancing resource in the Nordic system, and will become even more important as the share of variable renewable energy sources increases. This thesis concerns balancing of active power, especially the real-time balancing called frequency control. The thesis starts in a description of the situation today, setting up models for the behaviour of hydropower units and the power system relevant to frequency control, and comparing the models with experiments on several hydropower units and on the response of the Nordic grid. It is found that backlash in the regulating mechanisms in hydropower units have a strong impact on the quality of the delivered frequency control. Then, an analysis of what can be done right now to improve frequency control and decrease its costs is made, discussing governor tuning, filters and strategies for allocation of frequency control reserves. The results show that grid frequency quality could be improved considerably by retuning of hydropower governors. However, clear technical requirements and incentives for good frequency control performance are needed. The last part of the thesis concerns the impact from increased electricity production from variable renewable energy sources. The induced balancing need in terms of energy storage volume and balancing power is quantified, and it is found that with large shares of wind power in the system, the energy storage need over the intra-week time horizon is drastically increased. Reduced system inertia due to higher shares of inverter connected production is identified as a problem for the frequency control of the system. A new, linear synthetic inertia concept is suggested to replace the lost inertia and damping. It is shown that continuously active, linear synthetic inertia can improve the frequency quality in normal operation and decrease wear and tear of hydropower units delivering frequency control.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 105
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1460
Keywords
hydropower, frequency control, governors, power system stability, inertia, primary control
National Category
Engineering and Technology Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-308441 (URN)978-91-554-9769-9 (ISBN)
Public defence
2017-02-07, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2017-01-13 Created: 2016-11-25 Last updated: 2017-01-17

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Bladh, JohanSaarinen, LinnLundin, Urban

Search in DiVA

By author/editor
Bladh, JohanWallin, MattiasSaarinen, LinnLundin, Urban
By organisation
Electricity
In the same journal
IEEE transactions on energy conversion
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7725 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf