uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Macroprogramming of Wireless Sensor Networks using Task Graphs and Constraint Solving
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (ASTRA)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datorteknik. (Communication Research)
2012 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Programming a wireless sensor network (WSN) on node level is a tedious, difficult, and error-prone task. A way to address this problem is to use a high-level programming language specifically designed for WSNs. However, we anticipate to go one step further and provide a standard and generic model for macro-level programming of WSNs. We propose a platform for WSNs as a multi-layer abstraction approach for macroprogramming, where, on the highest level of abstraction, the developer uses an interactive graphical interface to specify the features of a sensor network as a data-driven task graph. The task graph expresses the functionality of the entire network as a whole, and it encapsulates the requirements and resource limitations on the network and the sensor nodes, as well as the data flows among the tasks. This platform makes use of several optimization methods, such as constraint programming, to map the tasks to nodes optimally, and to plan the configuration for deployment to maximize the network life time. It makes use of more realistic network abstractions and takes into account the dynamics of WSNs. We present our model for macro-level programming and show that many optimization problems in this context can be solved more efficiently with suitable techniques.

sted, utgiver, år, opplag, sider
2012.
HSV kategori
Forskningsprogram
Datavetenskap med inriktning mot datorkommunikation; Datavetenskap med inriktning mot inbyggda system
Identifikatorer
URN: urn:nbn:se:uu:diva-185269OAI: oai:DiVA.org:uu-185269DiVA, id: diva2:571112
Konferanse
8th Swedish National Computer Networking Workshop (SNCNW), 7-8 June, 2012, Stockholm, Sweden
Prosjekter
ProFuNTilgjengelig fra: 2012-11-22 Laget: 2012-11-21 Sist oppdatert: 2017-01-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Hassani Bijarbooneh, FarshidJacobsson, Martin

Søk i DiVA

Av forfatter/redaktør
Hassani Bijarbooneh, FarshidJacobsson, Martin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 723 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf