uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On a one-phase free boundary problem
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
2013 (engelsk)Inngår i: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, nr 1, s. 181-191Artikkel i tidsskrift (Annet vitenskapelig) Published
Abstract [en]

In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

sted, utgiver, år, opplag, sider
2013. Vol. 38, nr 1, s. 181-191
Emneord [en]
One-phase, free boundary, NTA, non-divergence, linear
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:uu:diva-186265DOI: 10.5186/aasfm.2013.3815ISI: 000316239200009OAI: oai:DiVA.org:uu-186265DiVA, id: diva2:572809
Tilgjengelig fra: 2012-11-30 Laget: 2012-11-28 Sist oppdatert: 2017-12-07bibliografisk kontrollert
Inngår i avhandling
1. Boundary Behavior of p-Laplace Type Equations
Åpne denne publikasjonen i ny fane eller vindu >>Boundary Behavior of p-Laplace Type Equations
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations.

Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary.  Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough. 

Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough.

In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling.

Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case.

In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ.

Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1035
Emneord
p-Laplace, Boundary Harnack inequality, A-harmonic, Ahlfors regularity, NTA-domains, Martin boundary, Reifenberg flat, Approximable by Lipschitz graphs, Subelliptic, Carleson estimate
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
urn:nbn:se:uu:diva-198008 (URN)978-91-554-8645-7 (ISBN)
Disputas
2013-05-24, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-05-03 Laget: 2013-04-08 Sist oppdatert: 2013-08-30

Open Access i DiVA

fulltext(231 kB)203 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 231 kBChecksum SHA-512
5757a76ebeae46fc7142bbe51011589789a38e156eef8c81799a5affbcb5c28d41fb793bbab84533b755363a180e3f7c485b01cb1f91b8302e8e527f51afd3d3
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://www.acadsci.fi/mathematica/

Personposter BETA

Avelin, Benny

Søk i DiVA

Av forfatter/redaktør
Avelin, Benny
Av organisasjonen
I samme tidsskrift
Annales Academiae Scientiarum Fennicae Mathematica

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 213 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 610 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf