uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cluster detection in cytology images using the cellgraph method
Vise andre og tillknytning
2012 (engelsk)Inngår i: Information Technology in Medicine and Education (ITME), 2012 International Symposium, 2012, s. 923-927Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Automated cervical cancer detection system is primarily based on delineating the cell nuclei and analyzing their textural and morphometric features for malignant characteristics. The presence of cell clusters in the slides have diagnostic value, since malignant cells have a greater tendency to stick together forming clusters than normal cells. However, cell clusters pose difficulty in delineating nucleus and extracting features reliably for malignancy detection in comparison to free lying cells. LBC slide preparation techniques remove biological artifacts and clustering to some extent but not completely. Hence cluster detection in automated cervical cancer screening becomes significant. In this work, a graph theoretical technique is adopted which can identify and compute quantitative metrics for this purpose. This method constructs a cell graph of the image in accordance with the Waxman model, using the positional coordinates of cells. The computed graph metrics from the cell graphs are used as the feature set for the classifier to deal with cell clusters. It is a preliminary exploration of using the topological analysis of the cellgraph to cytological images and the accuracy of classification using SVM showed that the results are well suited for cluster detection.

sted, utgiver, år, opplag, sider
2012. s. 923-927
Serie
Proceedings of 2012 International Symposium on Information Technologies in Medicine and Education, ITME 2012 ; 2
Emneord [en]
adjacency matrix, cell cluster, cellgraph, cervical cancer, graph metrics, support vector machine, waxman model
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-186823DOI: 10.1109/ITiME.2012.6291454ISBN: 978-1-4673-2109-9 (tryckt)OAI: oai:DiVA.org:uu-186823DiVA, id: diva2:575897
Konferanse
2012 International Symposium on Information Technologies in Medicine and Education, ITME 2012, 3 August 2012 through 5 August 2012, Hokodate, Hokkaido, Japan
Tilgjengelig fra: 2012-12-11 Laget: 2012-11-29 Sist oppdatert: 2017-02-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Malm, PatrikBengtsson, Ewert

Søk i DiVA

Av forfatter/redaktør
Malm, PatrikBengtsson, Ewert
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 447 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf