Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Show others and affiliations
2012 (English)In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 125, no 21, p. 5084-5095Article in journal (Refereed) Published
Abstract [en]

Specificity and versatility in cyclic AMP (cAMP) signalling are governed by the spatial localisation and temporal dynamics of the signal. Phosphodiesterases (PDEs) are important for shaping cAMP signals by hydrolyzing the nucleotide. In pancreatic β-cells, glucose triggers sub-plasma-membrane cAMP oscillations, which are important for insulin secretion, but the mechanisms underlying the oscillations are poorly understood. Here, we investigated the role of different PDEs in the generation of cAMP oscillations by monitoring the concentration of cAMP in the sub-plasma-membrane space ([cAMP](pm)) with ratiometric evanescent wave microscopy in MIN6 cells or mouse pancreatic β-cells expressing a fluorescent translocation biosensor. The general PDE inhibitor IBMX increased [cAMP](pm), and whereas oscillations were frequently observed at 50 µM IBMX, 300 µM-1 mM of the inhibitor caused a stable increase in [cAMP](pm). The [cAMP](pm) was nevertheless markedly suppressed by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine, indicating IBMX-insensitive cAMP degradation. Among IBMX-sensitive PDEs, PDE3 was most important for maintaining a low basal level of [cAMP](pm) in unstimulated cells. After glucose induction of [cAMP](pm) oscillations, inhibitors of PDE1, PDE3 and PDE4 inhibitors the average cAMP level, often without disturbing the [cAMP](pm) rhythmicity. Knockdown of the IBMX-insensitive PDE8B by shRNA in MIN6 cells increased the basal level of [cAMP](pm) and prevented the [cAMP](pm)-lowering effect of 2',5'-dideoxyadenosine after exposure to IBMX. Moreover, PDE8B-knockdown cells showed reduced glucose-induced [cAMP](pm) oscillations and loss of the normal pulsatile pattern of insulin secretion. It is concluded that [cAMP](pm) oscillations in β-cells are caused by periodic variations in cAMP generation, and that several PDEs, including PDE1, PDE3 and the IBMX-insensitive PDE8B, are required for shaping the sub-membrane cAMP signals and pulsatile insulin release.

Place, publisher, year, edition, pages
2012. Vol. 125, no 21, p. 5084-5095
Keywords [en]
cAMP, PDE, palmitate, STIM1, insulin secretion, total internal reflection fluorescence microscopy, beta-cell, alpha-cell, glucagon secretion, oscillations
National Category
Endocrinology and Diabetes
Identifiers
URN: urn:nbn:se:uu:diva-192307DOI: 10.1242/jcs.107201ISI: 000312984300016PubMedID: 22946044OAI: oai:DiVA.org:uu-192307DiVA, id: diva2:589352
Available from: 2013-01-17 Created: 2013-01-17 Last updated: 2017-12-06Bibliographically approved
In thesis
1. On the Generation of cAMP Oscillations and Regulation of the Ca2+ Store-operated Pathway in Pancreatic Islet α- and β-cells
Open this publication in new window or tab >>On the Generation of cAMP Oscillations and Regulation of the Ca2+ Store-operated Pathway in Pancreatic Islet α- and β-cells
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Insulin and glucagon are released in pulses from pancreatic β- and α-cells, respectively. Both cell types are electrically excitable, and elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) due to depolarization with voltage-dependent entry of the cation is the main trigger of hormone secretion. Store-operated Ca2+ entry  (SOCE) also contributes to the [Ca2+]i elevation and this process has been suggested to be particularly important for glucagon secretion. cAMP is another important messenger that amplifies Ca2+-triggered secretion of both hormones, but little is known about cAMP dynamics in islet cells. In type-2 diabetes, there is deteriorated β-cell function associated with elevated concentrations of fatty acids, but the underlying mechanisms are largely unknown. To clarify the processes that regulate insulin and glucagon secretion, cAMP signalling and the store-operated pathway were investigated in β- and α-cells, primarily within their natural environment in intact mouse and human islets of Langerhans. Fluorescent biosensors and total internal reflection microscopy were used to investigate signalling specifically at the plasma membrane (PM). Adrenaline increased and decreased the sub-PM cAMP concentration ([cAMP]pm) in immuno-identified α-cells and β-cells, respectively, which facilitated cell identification. Glucagon elicited [cAMP]pm oscillations in α- and β-cells, demonstrating both auto- and paracrine effects of the hormone. Whereas glucagon-like peptide 1 (GLP-1) consistently elevated [cAMP]pm in β-cells, only few α-cells responded, indicating that GLP-1 regulates glucagon secretion without changes of α-cell [cAMP]pm. Both α- and β-cells responded to glucose with pronounced oscillations of [cAMP]pm that were partially Ca2+-dependent and synchronized among islet β-cells. The glucose-induced cAMP formation was mediated by plasma membrane-bound adenylyl cyclases. Several phosphodiesterases (PDEs), including the PDE1, -3, -4, and -8 families, were required for shaping the [cAMP]pm signals and pulsatile insulin secretion. Prolonged exposure of islets to the fatty acid palmitate deteriorated glucose-stimulated insulin secretion with loss of pulsatility. This defect was associated with impaired cAMP generation, while [Ca2+]i signalling was essentially unaffected. Stromal interacting molecule 1 (STIM1) is critical for activation of SOCE by sensing the Ca2+ concentration in the endoplasmic reticulum (ER). ER Ca2+ depletion caused STIM1 aggregation, co-clustering with the PM Ca2+ channel protein Orai1 and SOCE activation. Glucose, which inhibits SOCE by filling the ER with Ca2+, reversed the PM association of STIM1. Consistent with a role of the store-operated pathway in glucagon secretion, this effect was maximal at the low glucose concentrations that inhibit glucagon release, whereas considerably higher concentrations were required in β-cells. Adrenaline induced STIM1 translocation to the PM in α-cells and the reverse process in β-cells, partially reflecting the opposite effects of adrenaline on cAMP in the two cell types. However, cAMP-induced STIM1 aggregates did not co-cluster with Orai1 or activate SOCE, indicating that STIM1 translocation can occur independently of Orai1 clustering and SOCE.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. p. 64
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 860
Keywords
cAMP, oscillations, adrenaline, GLP-1, phosphodiesterase, palmitate, STIM1, Orai1, store-operated calcium entry, insulin secretion, glucagon secretion, β-cell, α-cell
National Category
Cell and Molecular Biology
Research subject
Medical Cell Biology
Identifiers
urn:nbn:se:uu:diva-191852 (URN)978-91-554-8584-9 (ISBN)
Public defence
2013-03-07, B22, BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2013-02-13 Created: 2013-01-14 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Tian, GengXu, YunjianShuai, HongyanTengholm, Anders

Search in DiVA

By author/editor
Tian, GengXu, YunjianShuai, HongyanTengholm, Anders
By organisation
Department of Medical Cell Biology
In the same journal
Journal of Cell Science
Endocrinology and Diabetes

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 674 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf