uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Combination of F-18-FDG PET and Cerebrospinal Fluid Biomarkers as a Better Predictor of the Progression to Alzheimer's Disease in Mild Cognitive Impairment Patients
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för radiologi, onkologi och strålningsvetenskap, Enheten för nuklearmedicin och PET.
Vise andre og tillknytning
2013 (engelsk)Inngår i: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 33, nr 4, s. 929-939Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The biomarker-based new diagnostic criteria have been proposed for Alzheimer's disease (AD) spectrum. However, any biomarker alone has not been known to have satisfactory AD predictability. We explored the best combination model with baseline demography, neuropsychology, F-18-fluorodeoxyglucose positron emission tomography (FDG-PET), cerebrospinal fluid (CSF) biomarkers, and apolipoprotein E (APOE) genotype evaluation to predict progression to AD in mild cognitive impairment (MCI) patients. Alongitudinal clinical follow-up (mean, 44 months; range, 1.6-161.7 months) of MCI patients was done. Among 83 MCI patients, 26 progressed to AD (MCI-AD) and 51 did not deteriorate (MCI-Stable). We applied that univariate and multivariate logistic regression analyses, and multistep model selection for AD predictors including biomarkers. In univariate logistic analysis, we selected age, Rey Auditory Verbal Retention Test, parietal glucose metabolic rate, CSF total tau, and presence or not of at least one APOE epsilon 4 allele as predictors. Through multivariate stepwise logistic analysis and model selection, we found the combination of parietal glucose metabolic rate and total tau representing the best model for AD prediction. In conclusion, our findings highlight that the combination of regional glucose metabolic assessment by PET and CSF biomarkers evaluation can significantly improve AD predictive diagnostic accuracy of each respective method.

sted, utgiver, år, opplag, sider
2013. Vol. 33, nr 4, s. 929-939
Emneord [en]
Biomarkers, combination, mild cognitive impairment, predictor
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-195619DOI: 10.3233/JAD-2012-121489ISI: 000313964200004OAI: oai:DiVA.org:uu-195619DiVA, id: diva2:608321
Tilgjengelig fra: 2013-02-27 Laget: 2013-02-26 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Wall, Anders

Søk i DiVA

Av forfatter/redaktør
Wall, Anders
Av organisasjonen
I samme tidsskrift
Journal of Alzheimer's Disease

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 550 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf