Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolutionary consequences of self-fertilization in plants
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
2013 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 280, no 1760, p. 20130133-Article, review/survey (Refereed) Published
Abstract [en]

The transition from outcrossing to self-fertilization is one of the most common evolutionary changes in plants, yet only about 10-15% of flowering plants are predominantly selfing. To explain this phenomenon, Stebbins proposed that selfing may be an 'evolutionary dead end'. According to this hypothesis, transitions from outcrossing to selfing are irreversible, and selfing lineages suffer from an increased risk of extinction owing to a reduced potential for adaptation. Thus, although selfing can be advantageous in the short term, selfing lineages may be mostly short-lived owing to higher extinction rates. Here, we review recent results relevant to the 'dead-end hypothesis' of selfing and the maintenance of outcrossing over longer evolutionary time periods. In particular, we highlight recent results regarding diversification rates in self-incompatible and self-compatible taxa, and review evidence regarding the accumulation of deleterious mutations in selfing lineages. We conclude that while some aspects of the hypothesis of selfing as a dead end are supported by theory and empirical results, the evolutionary and ecological mechanisms remain unclear. We highlight the need for more studies on the effects of quantitative changes in outcrossing rates and on the potential for adaptation, particularly in selfing plants. In addition, there is growing evidence that transitions to selfing may themselves be drivers of speciation, and future studies of diversification and speciation should investigate this further.

Place, publisher, year, edition, pages
2013. Vol. 280, no 1760, p. 20130133-
Keywords [en]
adaptation, dead-end hypothesis, mating system transition
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-200847DOI: 10.1098/rspb.2013.0133ISI: 000318024600006OAI: oai:DiVA.org:uu-200847DiVA, id: diva2:625185
Available from: 2013-06-04 Created: 2013-06-04 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Slotte, Tanja

Search in DiVA

By author/editor
Slotte, Tanja
By organisation
Evolutionary BiologyScience for Life Laboratory, SciLifeLab
In the same journal
Proceedings of the Royal Society of London. Biological Sciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf