uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impact of static pressure on transmembrane fluid exchange in high molecular weight cut off microdialysis
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Biokemisk struktur och funktion. (Klinisk kemi)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. (Dahlin)
2014 (engelsk)Inngår i: Biomedical microdevices (Print), ISSN 1387-2176, E-ISSN 1572-8781, Vol. 16, nr 2, s. 301-310Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With the interest of studying larger biomolecules by microdialysis (MD), this sampling technique has reached into the ultrafiltration region of fluid exchange, where fluid recovery (FR)  has a strong dependence on pressure. Hence in this study, we focus on the fluid exchange across the high molecular weight cut off MD membrane under the influence of the static pressure in the sampling environment. A theoretical model is presented for MD with such membranes, where FR has a linear dependence upon the static pressure of the sample. Transmembrane (TM) osmotic pressure difference and MD perfusion rate decide how fast FR increases with increased static pressure.

A test chamber for in vitro MD under static pressure was constructed and validated. It can hold four MD probes under controlled pressurized conditions. Comparison showed good agreement between experiment and theory. Moreover, test results showed that the fluid recovery of the test chamber MD can be set accurately via the chamber pressure, which is controlled by sample injection into the chamber at precise rate. This in vitro system is designed for modelling in vivo MD in cerebrospinal fluid and studies with biological samples in this system may be good models for in vivo MD. 

sted, utgiver, år, opplag, sider
2014. Vol. 16, nr 2, s. 301-310
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-212726DOI: 10.1007/s10544-013-9833-1ISI: 000334362000013OAI: oai:DiVA.org:uu-212726DiVA, id: diva2:679122
Forskningsfinansiär
Swedish Research Council, P29797-1Tilgjengelig fra: 2013-12-13 Laget: 2013-12-13 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. Microdialysis Sampling of Macro Molecules: Fluid Characteristics, Extraction Efficiency and Enhanced Performance
Åpne denne publikasjonen i ny fane eller vindu >>Microdialysis Sampling of Macro Molecules: Fluid Characteristics, Extraction Efficiency and Enhanced Performance
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, fluid characteristics and sampling efficiency of high molecular weight cut-off microdialysis are presented, with the aim of improving the understanding of microdialysis sampling mechanisms and its performance regarding extraction efficiency of biological fluid and biomarkers.

Microdialysis is a well-established clinical sampling tool for monitoring small biomarkers such as lactate and glucose. In recent years, interest has raised in using high molecular weight cut-off microdialysis to sample macro molecules such as neuropeptides, cytokines and proteins. However, with the increase of the membrane pore size, high molecular weight cut-off microdialysis exhibits drawbacks such like unstable catheter performance, imbalanced fluid recovery, low and unstable molecule extraction efficiency, etc. But still, the fluid characteristics of high molecular weight cut-off microdialysis is rarely studied, and the clinical or in vitro molecule sampling efficiency from recent studies vary from each other and are difficult to compare.  

Therefore, in this thesis three aspects of high molecular weight cut-off microdialysis have been explored. The first, the fluid characteristics of large pore microdialysis has been investigated, theoretically and experimentally. The results suggest that the experimental fluid recovery is in consistency with its theoretical formula. The second, the macromolecule transport behaviour has been visualized and semi-quantified, using an in vitro test system and fluorescence imaging. The third, two in vitro tests have been done to mimic in vivo cerebrospinal fluid sampling under pressurization, using native and differently surface modified catheters. As results, individual protein/peptide extraction efficiencies were achieved, using targeted mass spectrometry analysis.

In summary, a theory system of the fluid characteristics of high molecular weight cut-off microdialysis has been built and testified; Macromolecular transport of microdialysis catheter has been visualized; In vivo biomolecules sampling has been simulated by well-defined in vitro studies; Individual biomolecular extraction efficiency has been shown; Different surface modifications of microdialysis catheter have been investigated. It was found that, improved sampling performance can be achieved, in terms of balanced fluid recovery and controlled protein extraction efficiency.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 52
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1278
Emneord
microdialysis, high molecular weight cut-off, fluid characteristics, fluid recovery, extraction efficiency, biomarker, microporous membrane, macromolecule transport, transmembrane, large pore, surface modification, pluronic, dextran, in vitro, microdialysis catheter
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot mikrosystemteknik; Teknisk fysik med inriktning mot materialvetenskap
Identifikatorer
urn:nbn:se:uu:diva-261068 (URN)978-91-554-9315-8 (ISBN)
Disputas
2015-10-16, Polhem Salen, Angstrom Laboratory, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Berzelii Centre EXSELENT
Tilgjengelig fra: 2015-09-25 Laget: 2015-08-28 Sist oppdatert: 2015-10-01

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Chu, JiangtaoHjort, KlasLarsson, AndersDahlin, Andreas P

Søk i DiVA

Av forfatter/redaktør
Chu, JiangtaoHjort, KlasLarsson, AndersDahlin, Andreas P
Av organisasjonen
I samme tidsskrift
Biomedical microdevices (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1058 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf