uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Application of artificial neural networks for damage indices classification with the use of Lamb waves for the aerospace structures
AGH University of Science and Technology, Krakow, Polen.
AGH University of Science and Technology, Krakow, Polen.
AGH University of Science and Technology, Krakow, Polen.
AGH University of Science and Technology, Krakow, Polen.
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Key Engineering Materials, ISSN 1013-9826, E-ISSN 1662-9795, Vol. 588, s. 12-21Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Lamb waves (LW) are used for damage detection and health monitoring due to the long range propagation ability and sensitivity to structural integrity changes as well as their robustness in different applications. However, due to the dispersive character and multimode nature of LWs, analysis of the acquired ultrasonic signals is very complex. It becomes even more difficult when applied to a complex structure, for instance, an aircraft component with riveted joints and stringers characterized by difficult geometries. Therefore, numerous approaches to the evaluation of damage indices have been proposed in the literature. In this paper, comparison a number of damage indices applied to LWs testing in aircraft aluminum panels. The damage indices, known from the literature have been selected from the application point of view. Artificial neural network has been used for the classification of fatigue cracks and artificial damages induced in the specimens taken from a real aircraft structure. Article presents results of simulation, data analysis and data classification obtained using selected and dedicated neural network. The main aim of the presented research was to develop signal processing and signal classification methods for an aircraft health monitoring system. The article presents a part of the research carried out in the project named SYMOST.

Ort, förlag, år, upplaga, sidor
2014. Vol. 588, s. 12-21
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Elektroteknik med inriktning mot signalbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-214507DOI: 10.4028/www.scientific.net/KEM.588.12OAI: oai:DiVA.org:uu-214507DiVA, id: diva2:684957
Tillgänglig från: 2014-01-08 Skapad: 2014-01-08 Senast uppdaterad: 2017-12-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Stepinski, Tadeusz

Sök vidare i DiVA

Av författaren/redaktören
Stepinski, Tadeusz
Av organisationen
Signaler och System
I samma tidskrift
Key Engineering Materials
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 362 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf